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Scope 
 

Dear reader 

 

The purpose of this textbook is to introduce the basic understanding, the analysis and the design of 

reinforced concrete plates.  

 

The book has been written with an engineering approach in mind: We will start by identifying the 

problems to be solved and then develop a method to solve these. We will also check that this leads 

to methods, which are valid according to the basic mechanical rules.  

 

This inductive approach differs from the traditional deductive approach, but we will reach the same 

understanding, even if we often start with a simple problem, a simple test or a video of the testing 

and use this as a basis for the development.  

 

I have uses this approach in my teaching of basic concrete structures at the Technical University of 

Denmark for  few years and have found it easier for the students to understand - and often a lot 

more interesting for the students, as the relevance of other topics,  assumptions and simplifications 

becomes much clearer. 

 

I have produced this book as an electronic textbook for a number of reasons 

 

1. The use of e.g. a video in a printed textbook is not possible, where the electronic form 

enables the book to be placed on a homepage with links to videos and pictures placed on 

YouTube, Picassa or other free and public sites.  

 

2. The examples, exercises, solutions and in the end also the full classroom material will be 

made available for free download from the homepage in the latest versions, as eg. exercises 

are constantly updated, based on the feedback from students and assistant teachers. 

 

3. The textbook can have a logical, linear part and at the same time have additional examples, 

videos, small tests and additional examples, which can be used for those of you, who prefer 

one or several additional examples.  

 

4. The book can be updated whenever necessary, just as with additional examples and 

explanations can be added. 

 

5. It is possible to distribute the book free of costs and thus also free of charge – as any of you 

can download it to you PC or print it. 
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The relevant material consists of this book, the examples, but also of supporting files and videos. 

 

It need to be said, that at the book and the examples will be in English from the beginning, 

however, the exercises and the solutions and the rest will be in Danish at the moment, but these 

may be translated later. 

 

You may try a translation machine on the Internet as eg. Google, which may provide a fair 

translation from Danish to English and enable you to understand the exercises and solutions – but 

the lecture videos will naturally require some understanding of Danish (sorry about that, but 

regulations requires these lectures to be in Danish as they deal with basic concrete structures).  

 

The available material in English will thus be 

 

 This textbook, organized in six main chapters (1) 

 

 Relevant examples (1) 

 

plus additional material in Danish 

 

 Pdf copies of overheads for each chapter (1) 

 

 Videos of each of the presentations of these chapters (2) 

 

 Electronic examples as dynamic pdf-files for each chapter (1) 

 

 Videos of the lecture, organised as one lecture per chapter (2) 

 

 Exercises (1) 

 

 Solutions to exercises (1) 

 

The materials are available at  

 

(1): The course homepage www.concretestructures.byg.dtu.dk 

 

(2): The course account at Youtube, user: ConStruct2800Lyngby

http://www.concretestructures.byg.dtu.dk/
http://www.youtube.com/user/ConStruct2800Lyngby/videos?flow=grid&view=1
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What you need to know before you work with the plates: You must be able to analyse and design 

reinforced concrete beams, before you study the reinforced concrete plates and this means of course 

also that you must be able to estimate bending moments, shear forces and reactions. 

 

You do not need to be familiar with plate theory or finite element methods, however, such 

knowledge will help you understand the models for the concrete plates and also enable you to go 

beyond the examples in the book. Additional knowledge of virtual work, lower limit and upper limit 

solutions will also be a help for your understanding, but are not vital. 

 

 

 

 

 

 

 

I hope that you will find the book and the setup helpful for your 

understanding of reinforced concrete   plates, their function, behaviour and 

design – and that you in due time will find the reinforced concrete as 

fascinating and useful as I do. 

 

Enjoy 

 

Per Goltermann 

Professor 

DTU-Byg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

…. and I would also like to thank all the other concrete fans at the university and in the industry, 

who have helped me with samples, photographs, videos – and perhaps those of my students, who 

kept asking until I actually came up with a simple and logical explanation, which they could 

understand easily. I have now tested the approaches on almost 1000 students from B.Sc. Civil 

Engineering, B.Eng. Building Engineering and B.Eng. Architectural Engineering - so I hope the 

book will have a fair chance of working with other students as well. 
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Symbols and definitions 
 

As tensile reinforcement area; 

b width of a beam; 

c index for concrete; 

D plate bending stiffness; 

d effective height; 

Ec modulus of elasticity of the concrete 

Ec,long long term modulus of elasticity for the concrete; 

Ec,short short term modulus of elasticity for the concrete; 

Es modulus of elasticity of reinforcement steel; 

g dead load;  

L span length, length of yield line; 

i degree of restraint; 

Lx, Ly lengths of the rectangular slab in the x and y directions; 

M bending moment; 

m bending moment per width; 

mi restraining moment per width along edge i; 

mn bending moment per width in the n direction 

mu bending moment capacity for positive bending; 

m’u bending moment capacity for negative bending; 

mx, my bending moment per width in the x and y directions; 

mxy torsion moment per width; 

mxo,myo,mxyo maximal values of mx, my and mxy in a simply supported rectangular plate; 

p distributed load;  

px,py load transferred in the x and y directions; 

pi
(-) 

lower limit solutions load carrying  capacity for strip i; 

q live load; 

R concentrated reaction; 

Rij concentrated reaction at the junction of edge I and edge j; 

r reaction per length; 

s index for steel;  

t thickness of the slab, coordinate along a line; 

u deflection;  

v shear force per width; 

V shear force; 

vn shear force per width in the n direction; 

vx,vy shear force per width in the x and y directions; 

We,Wi external and internal work in failure mechanism for upper limit solution; 

x,y coordinates and indexes for the x and y directions; 

  ratio between modulus of elasticity of steel and concrete; 

, b   elastic parameters for estimation of elastic cross-sectional properties; 

   the creep factor; 

  reinforcement degree. 
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1. Introduction 
 

The best place to begin is to compare the beams and slabs (plate), which span in one direction only: 

There is no difference in the estimations of those two structural elements – but it will be different if 

we let the slabs span in two directions. 

 

  
 

Figure 1.1. A few structures with single span prefabricated plates or slabs. 

 

The design in practice is normally different as 

 

 The function of a beam is normally to carry a load and this means that the widths of beams 

tend to be as small as possible, usually determined by the wish to place the tensile 

reinforcement at the bottom of the cross-section. 

 

 The slab must be able to carry the load as well, but it will often be a lot wider, as the plates 

are normally used to fill a certain area, as eg. a separation of two floors in a building or to 

act as walls in building, exposed to wind loads. 

 

This means that beams will normally have a high reinforcement degree in the range of 0,2-0,4, 

whereas slabs normally have lower degrees in the range of 0,05-0,1. 

 

There are, however, limitations to the design of the single span slabs, which may be overcome by 

design and use of double span plates and use of plate theory. 
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1.1. Limitations to the single span slabs 

 

The use of prefabricated slabs or plates spanning in one direction, is very popular in the 

constructions business, but has a serious limitation in their span width. This is best realised in the 

case of a slab with load q and eigenweight g and a span L and bending stiffness EI, where the 

maximal shear force V, bending moment M and deflection u are estimated as 

 

2

4

1
( )

2

1
( )

8

5 ( )

384

V g q L

M g q L

g q
u L

EI

 

 




          (1.1) 

 

If we double the length of the span, then we will double V (factor 2) and quadrouble M (factor 4), 

but we will actually increase the deflection with a factor sixteen (factor 16) – this means that at 

larger spans, the deflection will determine the design or capacity of the slab as shown in Figure 1.2.  

 
 

Figure 1.2. Capacity (p=g+q) in a slab with a specific cross-section as a function of the span L. 

 

We may of course increase the reinforcement ratio (expensive and only possible up to a certain 

level) or we may increase the thickness of the slab (cheap), however, if we increase the thickness, 

then we increase the slabs own weight g equally. This means that longer spans require designs, 

where most of the slabs capacities are actually used for carrying the slabs own weight g and not the 

load q, which we need the slab to carry.  

 

This would obviously be a poor and uneconomic design and we need to find a solution for this 

problem, if we wish to design longer spans. 

 

A simple solution would be to let the slab span in two directions and use the strength of the concrete 

in two directions at the same time. 
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1.2. Double span slabs and their advantages 

 

The simplest idea is really to place reinforcement in both directions and let the slab span in the two 

directions, so we can utilize the concrete in the compression zone in the two different directions, as 

this would allow us to carry the load in two different directions at the same time using the same 

concrete eigenweight and this would lead to a lower deflection, lower bending moments and lower 

shear forces.  

 

 

9 m

9 m

9 m

9 m

 
 

Figure 1.2. Reinforcement arrangement for a double span bridge deck (left) and double spanning 

slabs in a parking garage at Illums Bolighus (right). 

 

The effect can be demonstrated in the classroom: We place a slab with a single span on two 

opposite line-supports and load the slab with a load and measure the deflection. We repeat the test 

again with supports along all four sides, so the slab can span in both directions and we measure the 

deflection.  

 

  
 

Figure 1.4. A isotropic slab with 6 kg load. Single span slab (left) and double span slab (right). 

Video of the demonstration available at Youtube 

 

http://www.youtube.com/watch?v=7pQyI_Jk_j8&list=PL2F86BA7F31D2FAFD&index=2&feature=plpp_video
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The current slab was a plexiglass slab of 5 x 800 x 800 mm, loaded with 6 kg and we measured a 

maximal deflection at single span of 31 mm and at double span a deflection of only 10 mm. 

 

We notice that the simple idea of describing the double spanning quadratic and isotropic slab as 

beam bending in the two directions would lead to predicted deflection of 50 % of single span slab. 

The deflection has, however, decreased to 10 mm / 31 mm = 32 %, which is much lower and much 

better – and we would like to benefit from this phenomenae. 

 

 
 

Figure 1.5. The corner of the double spanning plate lifts up at the corner. 

 

This simple test shows also that the correct behaviour of the slab is actually more complicated than 

just simple bending in two directions. A close look at the double span slab reveals that the corners 

of the slab actually lift from the supports during the test.  

 

So this is an effect, which we can use to design slabs for much longer and more economical spans, 

but we need to get a better understanding of the way the double span slab works – and this is why 

we need the plate theory. 

 

 

 

 

 

Notice: The term plate is used by the classic building mechanic theories for a plane specimens, 

where the thickness is significantly smaller than the width and length.  

 

A concrete plate is normally termed “a slab” is concrete theories and literature, so: 

 

“A SLAB IS A PLATE” 

 

but we will in this book use the term “plate”, when we deal with the classic plate theory and the 

term “slab”, when we deal with concrete plates slabs.
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1.3. What we need to be able to do  

 

We need to take the non-linear behaviour of reinforced concrete in bending into account as we 

learned for the reinforced concrete beams. 

 

   

  

1: Concrete is uncracked 

2: Cracks start to form 

3: Concrete is cracked 

4: Reinforcement starts to yield 

5: Reinforcement is yielding 

6: Failure in concrete in the compression zone 

 

Figure 1.5. Relationship between bending moment and curvature in a reinforced concrete beam. 

 

The relationship may be tested but will normally deviate more or less from the theoretical 

relationship, as not all effects 1 to 6 are clearly visible in all tests. 

 

We need also to be able to  

 

 Determine the equilibrium and boundary conditions for slabs 

 Determine the constitutive equations, which are the relationships between the generalized 

stresses and strains (as eg. bending moments versus curvatures) 

 Determine the deflections in the Serviceability Limit State 

 Determine or verify the loadcarrying capacity in the Ultimate Limit State 

 

in order to design a double span concrete slab or to verify deflections and load-carrying capacities.  

Bending moment 

Curvature 

Bending moment 

http://www.youtube.com/watch?v=_m118rIaP1I&feature=plcp
http://www.youtube.com/watch?v=_m118rIaP1I&feature=plcp
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1.4. The rest of the book 

 

The following topics will be dealt with in the chapters in the rest of the book 

 

2. Classic slab theory (very brief) 

3. Deflections in the uncracked and cracked states 

4. Lower limit solutions with a guessed solution 

5. Lower limit solutions with the strip method 

6. Upper limit solutions with the yield line method 

 

Each of these main chapters will be in their own chapter. 

 

The chapter 2 on classic plate theory is very brief as many universities offers courses in plate theory 

and it is therefore mainly to list the formulas and relationships required for the chapter 3. 

 

The chapter 3 deals with deformations in the serviceability limit state and utilize the plate theory. 

 

The chapters 4 and 5 can be read independently of chapter 2 and 3, although the lower limit 

solutions must fulfil the equilibrium and boundary conditions, listed in chapter 2. 

 

The chapter 6 can be read independently of the other chapters, although it is often interesting to 

compare the capacities derived by the methods in chapter 6 and 5. 

 

1.5. Reading instructions for this book 

 

The electronic text book use simple rules and logic combined with cases from tested specimens, 

examples and exercises and be organised in:  

 

1. a linear part, which will be the student must understand, as it is the core of the method and 

which suitable for printing as one file and 

 

2. key examples, which are very important for the understanding of the basic principles and 

assumptions and 

 

3. a non-linear part, which includes additional and optional examples, exercises, videos, 

presentation of test cases, references to additional reading material, simple tests etc. This 

part is more dynamic, as additional cases, examples and exercises are added when required, 

since the number of examples needed for fully understanding the method and the 

possibilities will depend on the individual student and on the individual aspect.  

 

The book has a brief English-Danish dictionary enclosed as the textbook is intended for use at 

Technical University of Denmark in Copenhagen, Denmark – where the lectures will normally be in 

Danish. (Teachers in other languages may likewise decide to add their own technical dictionary for 

their students). 
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2. Classic plate theory 
 

We noticed in our simple test that the double spanning plate had some interesting advantages 

compared to the single spanning plate, but that it also had a more complex behaviour.  

 

We will in this chapter (very briefly) outline the classic plate theory with equilibrium, boundary 

conditions and the generalised stress-strain relationships, so we can carry out the estimations later 

or set up simplified models and analysis.  

 

The classic plate theory is based on the assumptions that 

 

 The plate has a constant thickness 

 

 The plate is thin, compared to its length and width 

 

 The plate is exposed to pure bending 

 

 The plane cross-sections remain plane and perpendicular to the centre plane 

 

 The deflections are small compared to the thickness 

 

which we will assume are also valid for normal concrete plates or slabs and we will use these 

assumptions to derive the plate theory in the following. 

 

A more throughout introduction to plate theory can be found in the textbook from any university 

course covering plate theory and we will therefore keep the explanations as brief as possible and 

instead focus on the concrete slabs. 
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2.1. The classic plate theory 

 

The generalised stresses in the plate theory are shown in Figure 2.1. 

 

 
 

Figure 2.1. Generalised stresses 

 

The generalised stresses are 

 

mx  Bending moment per length, corresponding to bending of a fibre parallel to the x-axis  

my  Bending moment per length, corresponding to bending of a fibre parallel to y-axis 

mxy  Torsional moment per length 

vx, vy Shear force per length, corresponding to load transport along the x-axis and y-axis 

 

These generalised stresses are derived from the stresses in the same way as for beams, except that 

they are per width and not for the whole width as for the beams.  
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
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          (2.1) 
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The distributed load p and the resulting deflection u are positive in the same direction of the z-axis. 

The load p must be in equilibrium with the generalised stresses as shown in Figure 2.2. 

 

 
 

Figure 2.2. Distributed load and generalised stresses 

 

 The vertical equilibrium and the moment equilibriums around the x and the y-axes lead to the 

formulas 

 
2 22

2 2
2 0

xy yx

xyx
x

y xy

y

m mm
p

x x y y

mm

x y

m m

y x





 
   

   


 

 

 
 

 

        (2.2) 
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2.2. Reactions  

 

The reactions along an edge or support line, which is not parallel to either of the axes can be 

determined from Figure 2.3. 

 

 
 

Figure 2.3. Generalised stresses along a line 

 

The equilibriums lead to the formulas for the moment, torsion and shear force along the line 

 

2 2

cos sin

cos sin sin 2

½( )sin 2 cos 2

n x y

n x y xy

nt x y xy

m m m m

m m m m

    

  

 

 

  

   

       (2.3) 

 

The plate may be supported along this line, in which case the reaction (ri) along the line and the 

bending moment along this line (mi) can be determined as 

 

nt
n i

n i

m
r

s

m m




 




           (2.4) 

 

The distributed reaction ri depends on the derived of the torsion moment. If we integrate this 

reaction over a certain length, then we estimate the sum of the reactions over this length and we 

observe that there must be a single, concentrated reaction at any sharp corners as 

 

 
2 2 2 2 (2) (1)

12 11 1 1
( )

s s s snt
i n n nt nt ntss s s

m
R rds ds ds m m m

s


 


              (2.5) 

 

where s1 and s2 are the positions on the two sides of the corner and therefore infinitely close to each 

other. Two torsion moments are the torsion moments at each of the two sides of the corner.  
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2.3. Boundary conditions 

 

The plate boundary conditions may be free edges, simply supported, intermediate or fixed supports 

as shown in Figure 2.4. 

 

 
 

Figure 2.4. Support conditions and signatures. 

 

Free (unsupported) edge Simply supported edge Intermediate support Fixed support 

Bending moment mn=0 

Torsion moment mnt=0 

Reaction ri=0 

Bending moment mn=0 

Deflection u=0 

 

Deflection u=0 

Bending moment 

mn,left=mn,right 

Deflection u=0 

 

 

Table 2.1. Support conditions for different support types 



  

Reinforced Concrete Slabs. Design and Analysis  Page 2-6 

 

 

2.4. Resume for a rectangular plate 

 

In the case of a rectangular plate, the equations and conditions can be expressed in Figure 2.5.  

 

 
 

Figure 2.5. Equations and conditions for a rectangular plate. 
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2.5. Plate deformations 

 

The bending and torsion moments can in a linear elastic plate be estimated from the curvatures as 

 

2
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x x y

y y x
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where  
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           (2.7) 

 

and  is Poissons ratio, t is the thickness and where D is the bending stiffness per width, estimated 

for a homogenous, uncracked plate as 

 
3
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The stresses in the plate are estimated as 
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           (2.9) 

 

where z is the distance from the plates central plane. 

 

This leads to a differential equation for the linear elastic plate as follows 

 
4 4 4

4 2 2 4
2

u u u p

x x y y D

  
  
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         (2.10) 
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2.6. How to deal with a concrete slab 

 

The current formulas deal with the static equilibrium, which must be fulfilled by all slabs, but may 

be difficult to fulfil with simple models and calculations for more complex slabs. It deals also with 

the aspects of deformations, which may be a problem due to the non-linear relationships in steel, 

concrete and in the reinforced and cracked concrete cross-section. 

 

Uncracked: At low loads, the slab will be uncracked and we may use the classic plate theory. When 

the tensile stresses exceed the tensile strength, the slab will start to form cracks, however, these 

cracks will normally only be visible and affect the deformations, when the tensile stresses exceed 

the tensile strength significantly. 

 

Cracked: At higher loads, the slab will be partly cracked with an increasing number of cracks at 

increasing loads, leading to failure in the end. This failure will be similar to the failure in beams, 

provided we look at strips of the slab perpendicular to the cracks: The failure will be a combination 

of crushing of the concrete and yielding of the tensile reinforcement, perpendicular to the crack.  

 

 
 

Figure 2.6. Condition at failure along the crack. 

 

If we look at a section of the slab shown in Figure 2.6, then we can set up the equilibrium in the 

case of positive bending (tension in lower side of the slab)  

 

cos sin cos

sin cos sin

x xy ux

y xy uy

m ds m ds m ds

m ds m ds m ds

  

  

 

 
        (2.11) 

 

where  and ux uym m denotes the positive bending moment capacities in the x and y directions.  
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This leads to the failure or yield condition in a positive failure or yield line 

 
2( )( ) 0ux x uy y xym m m m m             (2.12) 

 

A similar expression can be found for failure with a negative bending or negative yield line, where 
' ' and ux uym m denotes the negative bending moment capacities in the x and y directions 

 
' ' 2( )( ) 0ux x uy y xym m m m m              (2.13) 

 

2.7. Additional reading material 

 

2.1. Timoshenko, S.P and Woinowsky-Krieger, S.: ”Theory of plates and shells”, McGraw-

Hill International Editions. 

This is an old classic and well known book, which presents a number of solutions for 

elastic plates, which may be helpful for some of the simplest cases. 

 

2.2. Any textbook from a plate theory course can be recommended for further knowledge and 

understanding of plate theory. 

 

2.3. Any Finite Element Method program with plate elements will allow calculations of a 

large range of linear elastic, isotropic plates as a modern alternative to Timoshenko’s 

book. 
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3. Serviceability Limit State, deflections 
 

One of the reasons, why we are looking into the behaviour of slabs with double spans is that we 

know that the double span may decrease the deflections significantly. In our simple test of the 

quadratic, isotropic plate, we managed to reduce the deflection with a factor of almost 3 ! – we do, 

however, need to be able to estimate the deflections without having to test them every time. 

 

The last chapter presented the plate theory briefly, including the relationship between the 

generalised stresses (bending and torsion moments) and the generalised strains (bending and torsion 

curvatures) and related these to the stresses and strains in the material. 

 

We will in this chapter determine the deflections in a very simple elastic plate and in a plate with a 

slightly more complex geometry. We will also have a close look at the stiffness (D or EI) used in 

the estimation of the deflections. 
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3.1. Bending stiffness of the reinforced concrete slab 

 

We did carry out a small test with a linear elastic plexiglass plate in the classroom, where we saw 

the effects of the double span. We know, however, that reinforced concrete cross-sections tend to 

crack in the tensile zone and that this results in a quite nonlinear relationship between the bending 

moment and the curvature in a beam.  

 

We should therefore start our investigations by checking the load-deflection relationship of a 

reinforced concrete slab, as e.g. a quadratic slab supported along all four sides and exposed to a 

distributed load as shown in Figure 3.1 below. 

 

 
 

Figure 3.1. Typical variation of the deformation of a slab during testing.  

A quadratic slab with simple supports [3.5, slab 822]. 

 

We can easily see that this slab has a linear relationship at the uncracked state, which reach up to 

7000 kg / 26300 kg = 27 % of the failure load, where it cracks. The relationship changes in the 

cracked state to another linear relation, which may be described by bending in the cracked state and 

this continues up to 18000 kg / 26300 kg = 68 % of the failure load, where the reinforcement starts 

to yield. 

 

The load levels in the Serviceability Limit State, where deflections are of importance, are normally 

well below the failure load and will often, but not always, be in the uncracked state. 

http://www.youtube.com/watch?v=xlKj6EGZosQ&feature=plcp
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3.2. Short term and long term loading 

 

We need also to realise that there is a difference between the level of the loads, which only acts for 

a short period (minutes, hours or days) and the level of the loads, which acts for a longer time 

(years).  

 

The deflections for the short term loads must be estimated with short-term modulus of elasticity, 

whereas the deflections for the long term loads must be estimated with the long term modulus of 

elasticity, so  

 

 short term deflections are estimated for the high, short term value of the load using the 

concretes normal modulus of elasticity (Ec,short=Ecm), but 

 

 long term deflections are estimated for the lower long term value of the load using long-term 

values of the modulus of elasticity (Ec,long=Ecm/(1+creep factor), which on the safe side can 

be taken as Ec,long=Ec,short/4) 
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3.3. Bending stiffness estimation 

 

In design for practical structures, the engineer will often assume that the slabs are uncracked and 

use D as bending stiffness as  

 
3

212(1 )

cE t
D





          (3.1) 

 

this will normally provide a fair estimate of the deflections at modest loads as seen from Figure 3.1, 

although the slab is usually more or less cracked even in the serviceability state. However, if the 

engineer wishes to be absolutely sure to obtain a conservative estimate, then it will be assumed that 

the cross-section is cracked, only the tensile reinforcement is taken into account and D will be 

replaced by EI/width, where EI is estimated for the cracked cross-section for short-term or long 

term loads as 

 

3 2 21
( / 2) ( )

12

where the height of the compressionzone x is found from

( / 2) ( ) 0

and where  is defined as

=E /

c t

t s

t s

s c

EI E I

I x x x A d x

S x x A d x x

E











   

     

     (3.2) 

 

The above expressions can be derived for a beam with a cross-section in pure bending with no 

compressive reinforcement, where 

 

As  is the amount of tensile reinforcement per width b 

d  is the effective height of the reinforcement 

Es  is the modulus of elasticity of the reinforcement 

Ec  is the modulus of elasticity of the concrete (short term or long term, depending of the load  

 duration) 
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3.4. Rectangular slab with simple supports, solved by perturbation method 

 

We will investigate the simple, but common, case of a rectangular slab, simply supported along all 

four sides and exposed to a uniform load p. 

  

 
 

Figur 3.2. Rectangular slab with support conditions and coordinate system. 

 

We can solve the differential equation (also called the equilibrium equation) and the boundary 

conditions in this case 

 
4 4 4

4 2 2 4
2

( / 2, ) ( / 2, ) 0

( / 2, ) ( / 2, ) 0

( , / 2) ( , / 2) 0

( , / 2) ( , / 2) 0

x x x x

x x

y y y y

y y

u u u p

x x y y D

m x L y m x L y

u x L y u x L y

m x y L m x y L

u x y L u x y L

  
  

   

    

    

    

    

        (3.3) 

 

The solutions to the differential equation with p=0 are cosinus and sinus functions with different 

wavelengths, but we need to deal with the boundary conditions and the uniform distribution of p.  
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We may therefore use a perturbation method to describe the deformation u, and as we notice that 

the loading and the boundary conditions are double symmetric, then we will limit our solutions to 

the double symmetric deformations functions of u 

 

cos cos 1,3,5,... and 1,3,5,...
x y

m x n y
u n m

L L

   
      

   

      (3.4) 

 

which all fulfil the boundary conditions and also fulfil the differential equation for a distributed load 

of 

 
2 44 2

( , ) 2 cos cos
x x y y x y

m m n n m x n y
p x y

L L L L L L

                
                              

   (3.5) 

 

We may use a combination of these solutions to derive a solution for an uniform p-load as follows 

 

26
2 21 1

2 2

cos cos
16

where 1,3,5,... 1,3,5,...
x y

m n

x y

m x n y

L Lp
u m n

D m n
mn

L L

 



 

 

  
    

   
  

 
  

 

    (3.6) 

 

This method for solving the equations and boundary conditions were much used in the older days 

(when I was a student in the last millenium), where computers were few and slow or did not exist 

and where engineering therefore had to develop this kind of solution, where a number of the 

contributions had to be taken in order to reach a fairly accurate result. The current solution is 

derived by Navier and is presented in the classic handbook [3.1], where Timoshenko and 

Woinowsky-Krieger have presented a number of this type of solutions. 
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Inserting the solution for u in the last chapters definitions of the curvatures and the shear forces and 

moments, we find the maximal values of these 
4

max

2
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2
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,max 1
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x x

y x
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y x x

x x y

y x x

x

pL
u x y

D

m pL x y

m pL x y

pL x y L

pL x y L

r pL x y L

r pL x y L

R npL







 

 





 

 

 

  

  

  

  

 our corners

       (3.7) 

 

The estimated coefficients are listed in the Figure 3.3. below.  

 

  
 

Figure 3.3. Coefficients for deflections and generalised stresses [3.2]. 

 

We may now estimate the deflections of the slab, provided that we know the slabs stiffness D for 

the uncracked slab or EI for the cracked slab (where EI/width replaces D in the formulas). We may 

also estimate the moments and thus the tensile stresses in the concrete and evaluate, whether the 

cross-sections cracks or not. 

 

This is used in example 3.1. 
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3.5. Slabs with more complicated geometry, solved by FEM 

 

If we deal with a more complicated load pattern or a more complicated slab as eg. a rectangular slab 

with three sides supported and a hole, then it becomes obvious, that we can’t estimate the 

deflections with the old methods used in the previous example. 

 

 
 

Figure 3.4. Rectangular slab with a hole, three sides supported and a hole. 

 

Such slabs are normally analysed with a linear FEM-program, where the slab is subdivided into a 

number of rectangular or triangular elements, which describes the slabs geometry. A number of 

such programs exists and may estimate the maximal deflection. 

 

 
Figure 3.5. Division of the slab and variations of the deflections [3.5]. 

 

The slab on figure 3.5 was analysed with the FEM-program Abaqus for an isotropic slab with 

dimensions 4 by 5 m and a stiffness D. The model is linear elastic and the load and the stiffness 

may be replaced by other values since the maximal deflection depends on the parameters as 

 

max /u factor load stiffness           (3.8) 

 

This is used in example 3.2. 

http://www.youtube.com/watch?v=8l62jYkMlH8&feature=plcp
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3.6. Additional examples and problems 

 

 

Example 3.1: Quadratic slab, loaded by a uniform load and with a 

given uniform reinforcement. 

  

Recommended reading for the understanding of how to estimate 

deflections in the uncracked and the cracked state. 

 

 

 

Example 3.2: Rectangular slab with a hole and supports along 3 

sides, loaded by a uniform load and with a given uniform 

reinforcement arrangement.  

 

Recommended reading for the understanding of how to use FEM-

models for slightly more complex slabs. 

 

 

Exercise B11-13  

(in Danish) 
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3.7. Additional reading material  

 

3.1. Timoshenko, S.P and Woinowsky-Krieger, S.: ”Theory of plates and shells”, McGraw-Hill 

International Editions. 

This is an old classic book, which presents a number of solutions for elastic plates, which 

may be helpful for some simple cases. 

 

3.2. Teknisk Ståbi, Ny Teknisk Forlag A/S, Denmark 

This is an engineering handbook available in Danish and it will normally be a book, that 

any civil or building engineering student will have at this level of their studies and 

similarly, must professional engineers will have. Most other countries have similar 

handbooks, which often contains a few solutions for elastic plates.   

 

3.3. Any Finite Element Method program with plate elements. Such a program can estimate the 

deflections of a large range of plate. This is a modern and realistic alternative to 

Timoshenko’s book. 

 

References 

 

3.4. Bach, C. and Graf, O.: ”Tests with simply supported, quadratic reinforced concrete plates” 

(In German:” Versuche mit allseitig aufliegenden, quadratischen und rechteckigen 

eisenbetonplatten”),  Deutscher Ausshuss für Eisenbeton, Heft 30, Berlin 1915. 

 

3.5. Mehlsen, H.: “Calculations of partly cracked concrete plates”, DTU Byg, February 2011.
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4. Ultimate Limit State. Lower-limit solution with a guessed solution 
 

The plate theory describes the differential equation and the boundary conditions, which must be 

fulfilled in order to fulfil the equilibrium and the constitutive conditions. This will require complex 

models for more complex geometries or load conditions, but it is possible to establish simple, 

analytical solutions for simple geometries and load distributions. 

 

This may be achieved by a lower limit solution: A lower limit solution is a solution, which fulfils 

the condition of equilibrium and also fulfils the boundary conditions. This means that the solution is 

one of the many possible ways of transporting the loads to the supports through the plate and at the 

same time have equilibrium between the loads, the forces and the reactions in every point of the 

plate. A lower limit solution may not be the optimal solution and other solutions may verify a 

higher load-carrying capacity, but it will be on the safe side. 

 

The reinforced concrete slab shall then later be checked, so it can be verified that the slab has a 

sufficient load-carrying capacity to carry the cross-sectional forces, predicted by the lower-limit 

solution.   

 

We will therefore look at the simple and general case of a rectangular slab, simply supported along 

all four sides and loaded by a uniform load p. 

 

 
 

Figure 4.1. Geometry of rectangular slab. 

 



  

Reinforced Concrete Slabs. Design and Analysis  Page 4-2 

 

The plate equations and conditions were listed in the last chapter for a rectangular plate as 

 

 
 

Figure 4.2. Plate equation and boundary conditions. 

 

We will in the following develop such a lower limit solution by guessing a solution for a simple, but 

common case and after that we will see how solutions can be developed for more general cases. 
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4.1. The guessed solution for a rectangular slab with 4 sides supported 

 

In the case of a rectangular slab with supports on all four sides, loaded by a uniform load p it would 

be a good guess to assume that mx and my have parabolic variations (mx=a+bx+cx
2
, my=d+ey+fy

2
) 

as this would lead to constant values of the derived in the equilibrium equation. 

 

 
 

Figure 4.3. Rectangular slab with support conditions and reactions. 

 

In the slab shown in the figure above, it would be natural to guess at variations, corresponding to 

the situations of a single spanning slab in the x, respectively the y-direction. This would lead to  
2

1 3
3 1

2

2 4
4 2

1 4 ( )
2

1 4 ( )
2

x xo

x x

y yo

y y

m mx x
m m m m

L L

m my y
m m m m

L L

   
      
   

   
          

      (4.1) 

where mxo and myo are constants and m1, m2, m3 and m4 are the bending moments at the (eventually) 

fixed supports along the four sides.  
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The variation of the torsional moment can be guessed as well (mxy=g+hx+iy+jxy) and found to be 

xy xyo

x y

xy
m m

l l
             (4.2) 

It can be shown that setting 

 

( )xyo xo yom m m              (4.3) 

 

leads to the highest lower limit solution, that is the highest p-value for given mxo and myo.  

 

Inserting (4.1) to (4.3) in the plates differential equation (2.1) leads to 
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       (4.4) 

 

This solution leads to the reactions 
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         (4.5) 

12 23 34 41 ½( )xo yoR R R R m m      

 

4.2. Other guessed solutions 

 

It will of course be possible to develop other, guessed solutions for this and other problems and 

other load types, but it is only in few cases, that it will be possible to develop analytical lower-limit 

solutions. 

 

A new and modern possibility is, however, to use a Finite Element Method (FEM) program to 

determine a solution, as such programs will determine solutions which fulfils the conditions (see 

example 3.2).  

 

Using a FEM program will normally provide valid lower limit solutions, since the program’s 

solutions fulfil both the equilibrium and the boundary conditions with a sufficient accuracy. The 

program’s use of a simple stress-strain relationship will, however, of make the programs solutions 

extra conservative and a resulting in a higher consumption of resources (concrete and especially 

require more reinforcement). 
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4.3. Practical limitations  

 

The bending moments (m1 to m4) can in principle be almost freely chosen at a fixed support, but it 

will normally be preferred to limit the degree of restraint i, defined as the ratio between the moment 

at the fixed support and the maximal moment in the span.  

 

The value of i must be within reasonable limits if excessive cracking is to be avoided. The Eurocode 

2 requires therefore that the restraining moment must be set to between 1/3 and 100 % of the 

restraining moment estimated by an elastic analysis. This is normally ensured by choosing i as 

 

min

max min

0,5

0,64

0,64

i p

p p




 
 

          (4.5) 

 

where pmin and pmax are the highest and the lowest loads on this plate.   

 

Using this approach it is normally acceptable to replace the maximal moment in the slab with the 

moment found in the middle of the span leading to 
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  

    (4.6) 

 

4.4. Additional reading material 

 

4.1. Nielsen, M.P. and Bach, F.: ”A class of lower bound solutions for rectangular slabs”, 

Bygningsstatiske Meddelelser, Dansk Selskab for Bygningsstatik, Copenhagen, 

Denmark, Vol 3. September 1979.  

(This publication contains a number of additional, guessed solutions for other support 

conditions). 

4.2. Any FEM program, which use elastic plate elements. 
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5. Ultimate Limit State. The Strip Method 
 

In most constructions projects, it will turn out that most plates (walls, floors etc.) will have holes, 

non-uniform distribution of the loads or not be rectangular – in which case it will be impossible to 

find an analytical solution. 

 

  
 

Figure 5.1. A few examples of plates with different shapes and holes.  

Rectangular shape (example 5.1) and non-rectangular shape (example 5.2). 

 

The engineer needs therefore a more general method, capable of handling the more complex cases 

in a safe way and this will be provided by the strip method. 
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5.1. The strip method 

 

The idea behind the strip method is really to treat the plate as a system of strips (beams, plank, 

boards or similar), which means that each group of reinforcement bars, embedded in the concrete 

and parallel will be treated as an individual strip (beam).  

 

 
 

Figure 5.2. Reinforcement arrangement in a concrete slab. 

 

We may build up the structural model for transferring the loads through the slab to the supports by 

building up the plate by placing strips (beams, planks or similar) in the x and y-directions, each 

carrying a part of the load p as 

 
2 22 2

2 2 2 2
0 and 0 0, where

y yx x
x y x y

m mm m
p p p p p p

x y x y

  
         

   
 (5.1) 

 

where the shear forces and the reactions are determined for the strips (beams) as 

 

and
yx

x x y y

mm
r v r v

x y


   

 
        (5.2) 

 

This leads to a model of strips in different directions, each having bending and shear forces but no 

torsion (mxy=mnt=0) and provided a valid lower-limit solution as the equilibrium between the loads, 

the internal forces and the reactions is fulfilled in all parts of the plate. This is described in details in 

the examples 5.1 and 5.2. 
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In each strip the maximal and minimal moments (mi,min and mi,max) are determined at the lower limit 

of the loadcarrying capacity is determined as the maximal value of p=pi
(-)

, where the moments stay 

within  

 
'

,min ,maxiu i i ium m m m             (5.3) 

 

where m
’
iu and miu are the bending moment capacity of strip i in negative bending (tension in the 

top of the plate) and in positive bending (tension in the bottom of the plate). 

 

The lower limit solution for the capacity of the plate p
(-)

 is determined as the lowest of the capacities 

for the strips 

 
( ) ( ) ( )

1 2min( , ,...)p p p            (5.4) 

 

This will be a lower limit solution, as the load distribution between the strips and the division of the 

plate into strips may be less than optimal, however, it will secure the load-carrying capacity of the 

plate. The strip model will ignore the plates ability to transfer torsion moments, which may further 

decrease the estimated load-carrying capacity. 

 

 
 

Figure 5.3. Typical model (from example 5.2) transfer of the loads and models for the strips. 

 

A detailed description of how a model for a statically determined model is established is developed 

in example 5.1, whereas the more complicated, statically undetermined model above is developed in 

example 5.2. 
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5.2. Comparison to the classic plate theory 

 

The strip method could of course also be derived from the classic plate theory by ignoring the plates 

capacity for torsion, assuming mxy=mnt=0, which leads to  
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(2) (1)

nt ntR m m   (which results on no concentrated reactions at the corners) 

 

We can see that the equilibrium condition and the  reactions from the classic plate theory 

corresponds precisely to the strip methods conditions, as long as the plates torsion capacity is 

ignored – or to put it in another manner, as long as the chosen model fulfils the plates equations 

without torsion. 
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5.3. Additional examples and problems 

 

 
 

Example 5.1: C-shaped plate, loaded by a uniform load and with 

a given uniform reinforcement.  

 

Recommended reading for the understanding of how to build up 

the model and how to carry out the calculations. 

 

Example 5.2: Rectangular plate with a hole and supports along 3 

sides, loaded by a uniform load and with a given uniform 

reinforcement arrangement.  

 

Recommended reading for the understanding of how to build up 

the model and how to carry out the calculations 

 

 

Exercise B11-14 

(in Danish) 

 

Exercise B11-15 

(in Danish) 
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Exercise B11-16 

(in Danish) 

 

5.4. Additional reading material 

 

5.1. Hillerborg, A. ”Strip method design handbook”, E&FN Spon, 1996. 

(Professor Hillerborg was one of the late pioneers behind the strip method and this books 

contain  substantial amounts of explanations and illustrations of the method as well as a 

number of examples of more complicated or advanced use of the method) 
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6. Ultimate Limit State. The Yield Line Method 
 

The load-carrying capacities of reinforced concrete slabs may be verified by many lower-limit 

solutions, as e.g. the guessed solutions, the Finite Element Method estimations, the strip method or 

many others.  

 

The experience is, however, that the lower limit methods, suitable for simple estimations by hand 

tend to involve quite a lot of calculation for slabs with even just slightly complex geometries or load 

distributions. 

 
 

Figure 6.1. A few slabs, which would be difficult to or impossible to analyse with the strip method 

or with a guessed solution. 

 

We do therefore need a simple method for handling these slabs. Such a method can be established 

by investigating different failure mechanisms and determine the corresponding failure loads. 

6.1. The virtual work principle and the upper limit method 

 

The upper limit method is based on an assumed failure mechanism, which is evaluated using the 

Virtual Work Principle. This means in simple terms, that the student, designer, engineer or 

computer goes through the following steps 

 

1. chooses a possible failure mechanism, 

 

2. estimate the external work We (load times deformation) of the failure mechanism and 

 

3. estimate the internal work Wi (stress times strain) of the failure mechanism.  

 

4. estimate the external load at which the failure mechanism is possible by setting We=Wi. 

 

We will first use this method on a simple beam in order to understand the basics in the method and 

then move on to the more complex problem of the slabs. 
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6.2. Upper limit method for a simple beam 

 

Testing of the beam and the failure mechanism 

 

The beam has been tested in the lab and the failure mechanism has been observed as shown below 

 

 
 

Figure 6.2. Beam with 2-point loading [6.9]. 

 

The beam is turned up-side down for practical purposes in the testing in the laboratory and has 

therefore the tensile zone in the top.  

 

The beam shows yielding and significant crack formation in the marked area between the two point 

loads, as this part has the same, constant bending moment over this length (this can be seen in the 

video). 

http://www.youtube.com/watch?v=_m118rIaP1I&feature=plcp
http://www.youtube.com/watch?v=_m118rIaP1I&feature=plcp
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Static model and failure mechanism 

 

The load-carrying capacity of a beam is normally estimated with simple formulas as explained in 

any basic course in concrete structures and should not require use of the virtual work method, but is 

still very suitable as an introduction.  

 

We will therefore look at the simply supported beam shown below: 

 

 
 

Figure 6.3. Static model of the tested beam 

 

The test showed that the yielding may be concentrated in a minor length of the beam or it may be 

distributed over a length of the beam, but the actual failure would be concentrated in a small zone in 

the yielded area (a so called plastic hinge). This corresponds to the failure mechanism shown below 

 

 

 

 
 

Figure 6.4. Failure mechanism in the tested beam. 

 

We may now start using the virtual works principles and estimate outer and inner work and also 

estimate the load carrying capacity related to this failure mechanism.
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6.2.1. The external work  

 

The external work is easily estimated as the sum of the external loads multiplied with the 

incremental deformations of the beam in the failure in the load positions 

 

( ) ( )e i iW p s s ds P              (6.1) 

 

where 

 

Pi  is a concentrated load in point i 

p(s)  is a distributed line load at coordinate s 

i  is the incremental displacement of the mechanism in position i 

  is the incremental displacement of the mechanism at coordinate s 

 

6.2.2. The internal work 

 

The internal work is the sum of the bending moments and the incremental curvatures  in the 

beam, which occurs at the instant, where the failure occurs. This means that  

 

( ) ( )iW M s s ds            (6.2) 

 

The part of the beam failed (reinforcement yielded and the concrete was crushed) in more or less 

concentrated area in the zone between the two loads, which means that the extra, incremental 

curvature  occurs in this zone only and is zero in all other parts of the beam. This means that the 

inner work in the beam with a positive yielding moment is calculated as the plastic work in the zone  

 

( ) ( ) ( )i u u uW M s s ds M s ds M a M                     (6.3) 

 

where 

 

( )s ds             (6.4) 

 

and similarly in a beam with a negative yielding moment 

 
'

i uW M               (6.5) 

 

where 

 

Mu  is the positive yielding moment 

Mu’  is the negative yielding moment 

  is the bend in the plastic hinge  of the beam. 
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6.2.3. The loadcarrying capacity 

 

This is found by setting the internal work Wi equal to the external work We, leading to an upper 

limit value of load-carrying capacity. 

 

This is described in details in example 6.1. 

 

6.3. Additional examples and problems 

 

 

Example 6.1: Two-point loading of a simply 

supported beam tested in the laboratory.  

Recommended reading for the understanding 

of the upper limit solution for beams. 

 

 

Example 6.2: Cantilever beam with distributed 

and concentrated loads, which will show how 

to use the method on slightly more complex 

problems. 

 

6.4. Additional reading material 

 

Virtual work or virtual displacements are normally a part of the basic building mechanics courses 

and further explanations of the method can be found in standard textbooks as e.g. 

 

6.1. Hartsuijker, C. and Welleman, J.W.: “Engineering mechanics, volume 1, Equilibrium”, 

Springer 2006. This is an introduction to building mechanics and provides a brief 

introduction to the virtual works principle. 

 

6.2. Krenk, S.: “Mechanics and analysis of beams, columns and cables”. This provides a 

slightly more detailed and focused introduction to beams and to the virtual work principle. 
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6.5. Upper limit solution – yield line method – in slabs 

 

The upper limit solution in a slab is derived using the same approach as for a beam:  

 

1. we identify and select a kinematically permissible failure mechanism (yield line pattern),  

2. we calculate the external and internal work during the failure and  

3. we calculate the upper limit load from the requirement of We=Wi. 

 

6.5.1. Failure mechanisms during testing 

 

We will look at the behaviour of a slab during testing and see how it develops cracks and in the end 

how it fails. We will for this purpose look at the failure mechanisms of two simple slabs: 

 

Slab 1: A simple rectangular slab of fibre reinforced concrete tested at DTU 

Slab 2: A simple quadratic slab of reinforced concrete, tested in Stuttgart 

 

6.5.2. Testing of slab 1 

 

The slab was placed in a steel frame, providing simple supports along all four sides and loaded 

uniformly by an airbag. 

 

  
 

Figure 6.5. Rectangular slab 1 with observed 

shape of failure mechanism [6.7]. 

 

Figure 6.6 Slab 1 with observed crack formation 

[6.7]. 

 

The test setup did not allow a photographic registration of the crack development with increasing 

load, but the Figures 6.5 and 6.6 show clearly the developed cracks and the failure mechanism. 
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6.5.3. Testing of slab 2 

 

The quadratic reinforced concrete slab of 2 x 2 m was supported on a simple steel frame and loaded 

it 16 identical point loads (as a simulation of a uniform load). The deformations and the crack 

patterns were registered for each load steps shown on Figure 6.9.  

 

P = 7000 kg P = 7500 kg P = 8000 kg P = 9000 kg P = 10000 kg 

     
P = 12000 kg P = 14000 kg P = 16000 kg P = 18000 kg P = 20000 kg 

     
P = 22000 kg P = 24000 kg P = 26000 kg P = 26300 kg Load-deflection 

     

 

Figure 6.7. Development of cracks in concrete slab at increased load level [6.5]. 

http://www.youtube.com/watch?v=xlKj6EGZosQ&feature=plcp
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6.5.4. Failure mechanisms observed in the tests 

 

We can see that the slabs do not yield in points (hinges), but rather in lines, which allows the failure 

mechanism to develop.  

 

The mechanism for the slab 2 in Figure 6.7 involves tilting of the corners as the supports allowed 

the corners to tilt and influenced the crack formation near the corners to some extent, whereas the 

mechanism for the slab 1 in Figure 6.5 and 6.6 does not include tilting of the corners as the 

displacements of these were prevented. 

 

The measured deflections and registrations have identified the failure mechanisms as shown below 

 

 
 

 
Figure 6.8. Failure mechanism in slab 1 [6.7] 

Example 6.3 

Figure 6.9. Failure mechanism in slab 2 [6.5] 

Example 6.4 

  

We can see from these tests (and many more [6.8]) that the failure mechanism in concrete slabs 

involves yielding in lines, with or without tilting of the corners. We will therefore use the so-called 

“Yield line method” [6.6] developed at DTU, where the engineer estimates the load carrying 

capacity for the critical failure mechanism. This leads normally to simple estimations in cases, 

where the lower-limit solutions require extensive calculations or are even impossible to use.  

 

It needs to be said, that any upper limit solution predicts a load carrying capacity, equal to or above 

the correct failure load. This means that the failure load is correctly estimated if the engineer has 

identified the correct failure mechanism, slightly higher for a slightly incorrect failure mechanism, 

but it means also that the predicted failure load may be a lot too high if a wrong (but possible) 

failure mechanism is used. 

 

The method must therefore be used with some care in the design of structures, but has been used for 

decades in Denmark and other countries in the design.  

The advice to you is therefore to investigate several different failure mechanisms and perhaps even 

try to optimize those mechanisms as this will approach lead to a fairly safe and correct estimate of 

the load-carrying capacity. (That is actually what the old and experienced engineers do !). 
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6.6. Possible failure mechanisms for our models 

 

We have seen from the tested slab, that it is very easy to determine the failure mechanism after a 

test have been carried out – but we would also like to be able to predict the failure mechanism 

without actually testing a slab in order to be able to predict the load-carrying capacity. This is to a 

large extent dependent of engineering judgement – often combined with the analysis of several 

different failure mechanisms. 

 

We noticed that the displacements of the beam and the slab during the failure essentially consisted 

of  

 

1. sections, which moved and rotated without any additional curvature and 

2. plastic hinges or straight yield lines, which did curve and bend. 

 

This leads to a few simple rules to verify if a failure mechanism is possible as illustrated in Figure 

6.10, as section 1 must rotate around the axis A-B, where the displacement of any point in section 1 

is proportional to the distance to the axis of rotation.  

 

The section 2 must rotate around axis C-D and the displacement of any point in section 2 must be 

proportional to the distance to the axis of rotation. This means that the extrapolation of the yield line 

must meet the extrapolation of the two axis of rotation in a point O. 

 

The only exception to this rule is when the two axis of rotation are parallel, in which case the yield 

line between the two sections must be parallel to the two axis. The two axis and the yield lines 

extrapolations will thus never cross each other.  

 

 
Figure 6.10. Kinematically possible failure mechanism. 

 

The failure of a slab can result in either a part of the slab collapsing (local failure, local yield line 

pattern) or in all collapse of the whole slab (global failure, global yield line pattern). 

 

You may later use example 6.5 or download the self-quiz, to train your ability to distinguish 

between possible and impossible yield line patterns.

http://www.betonkonstruktioner.byg.dtu.dk/upload/subsites/betonkonstruktioner/example%206.7%20-%20possible%20or%20impossible%20yield%20line%20patterns.pdf
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6.7. The external work  

 

This is estimated (as for the beam) as the sum of the loads multiplied with the incremental 

deformations of the beam in the points, where the loads are applied 

 

( , ) ( , )e i iW p x y x y dx dy P             
(6.6) 

 

6.8. The internal work 

 

The work is carried out in the slab in the areas with yielding, concentrated in the yield lines, just as 

it was created in the plastic hinge in the beam. The work is proportional to the yielding moment and 

the “hinge” in the yield line as shown in Figure 6.11.  

 

 
 

Figure 6.11. Internal work in the slabs yield line, divided into sections 1 and 2. 

 

The area with yielding may be distributed over some width of the slab or be very local, but will in 

the abstract model be concentrated in a yield line – just as the yielding in the beam was 

concentrated in a single plastic hinge. 

 

The internal work is the work in the yield lines (similar to the work in the plastic hinge in the beam) 

and calculated as 

 

i u uW m ds m L               (6.7) 

 

where 

 



  

Reinforced Concrete Slabs. Design and Analysis  Page 6-11 

 

mu  is the yielding moment per length for bending perpendicular to the yield line 

Δ  is the bend in the yielding line 

L  is the length of the yield line 

 

The problem with the estimation of the internal work in the yield lines is normally that there is a 

contribution from each of the yield lines and that the reinforcement directions may not be parallel or 

perpendicular to the yield line, so the estimation of the internal works in the yield lines may be quite 

extensive.  

 

We would therefore like to simplify the estimations by separating the internal work in a yield line 

into the contributions from each side of the yield line. This is estimated as the work carried out by 

the individual sections of the slab between the yield lines as 

 

in u in u in

i in u in

W m ds m L

W W m L

 



     

   



 
        (6.8) 

 

 

6.9. The load-carrying capacity  

 

This is now estimated (as for the beam) from 

 

o iW W
           

(6.9) 
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6.10. Rotations of a section and internal work 

 

A yield line does not have to be parallel to a convenient axis of rotation, just as the slab strength 

may be different in different directions – we may after all have different amounts of reinforcement 

in the different directions. We will therefore often wish to separate the rotation of a section in two 

contributions around the x and y axis as shown in Figure 6.12. 

 

 
 

Figure 6.12. Rotations of a section. 

 

The rotations on Figure 6.12 are defined as 

 

/ / /p x p x y p yu d u d u d            (6.10)  

 

and leads to the internal work of 

 

( )i ux y uy xW m m L             (6.11)
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6.11. Broken yield lines and internal work 

 

We can actually integrated this work from a number of the sides of a section of the plate as shown 

below where we find that the work for a “broken” positive (or broken negative) yield line can be 

estimated as the equivalent work along a straight line, going from one end to the other end of the 

broken yield line. 

 

 
 

Figure 6.13. “Broken” yield line consisting of several straight yield lines, all either 100 % positive 

or 100 % negative lines. Lines are shown positive on figure. 

 

The calculation of the total, equivalent internal work from the yield line through the points A-B-C-

D is found as 

 

, , , ,

, , , , , ,

, ,

( ) ( ) ( )

i ABCD i AB i BC i CD

uy x x AB ux y y AB uy x x BC ux y y BC uy x x CD ux y y CD

uy x x AD ux y y AD

W W W W

m L m L m L m L m L m L

m L m L

     

 

  

     

 
 

(6.12) 

 

This expression is actually quite logical, when we remember that mux and muy denote the bending 

moment capacities per length correspond to the bending strengths from reinforcement bars placed in 

the x and y directions. The equivalent internal work is thus proportional to the bend and to the 

number of reinforcement bars crossing the yield lines. 
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6.12. Additional examples and problems 

 

 
 

Example 6.3: Rectangular slab tested at DTU. 

Recommended reading for understanding failure mechanisms and 

estimations for the yield line method. 

 
 

Example 6.4: Square slab, used by K.W. Johansen as a part of the 

documentation of the yield line method. 

Recommended reading for the understanding of failure 

mechanisms and the effects of tilting corners and how to avoid 

tilting of the corners. 

 

Example 6.5: Slab used as a problem at the examination, where 

the students should indicate a possible failure mechanism. A large 

number of yield line figures are presented for this plate, some are 

possible and some are not. Your task is to distinguish the possible 

mechanisms from the impossible mechanisms.   

 

An alternative to this is to download the self-quiz, which 

randomly select a number of yield line patterns from a pool of 

over 150 figures – you can use the quiz a number of times. 

http://www.betonkonstruktioner.byg.dtu.dk/upload/subsites/betonkonstruktioner/example%206.7%20-%20possible%20or%20impossible%20yield%20line%20patterns.pdf
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Exercise B11-14 

(in Danish) 

 
 

Exercise B11-15 

(in Danish) 

 
 

Exercise B11-16 

(in Danish) 

 

Exercise B11-17 

(in Danish) 
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6.13. Additional reading materials 

 

6.3.Johansen, K. W.: “Pladeformler”, Polyteknisk Forlag, Copenhagen, 1968, 14 pages (“Yield 

line formulae for slabs”, Translated by Cement and Concrete Association, London, 1972. 

Ref 12.044). 

This publication contains a large number of examples, where the upper limit solution is 

presented, but where the actual deriving of the formulas is not presented. 

 

6.4.Kennedy, Gerard and Goodshild, Charles: ”Practical yield line design”, British Cement 

Association, 2003, http://www.concretecentre.com/PDF/PYLD240603a.pdf, 171 pages. 

This is a good and extensive introduction to a practical use of the yield line method. 
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6.9.Khailani, Z.Y.; Pey, S. And Thyssen. A.A. :”Laboratoriepraktik 11761, Betonbjælke, 

 testning og videofremstilling”, Byg-DTU, December 2008, Lyngby, Denmark. 
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7. Dictionary (English – Danish) 
 

Kinematically permissible failure mechanism: Kinematisk tilladelig brudfigur 

Degree of restraint: Indspændingsgrad 

External work: Ydre arbejde 

Failure mechanism: Brudmekanisme 

Global failure : Global brudfigur, total brudfigur, total kollaps 

Internal work: Indre arbejde 

Local failure:  Lokal brud, lokal brudfigur 

Lower limit solution:  Nedreværdiløsning 

Plastic hinge: Flydeled 

Restraining moment: Indspændingsmoment  

Static conditions of equilibrium: Statiske ligevægtsbetingelser 

Static equilibrium : Statisk ligevægt 

Statically permissible solution: Statisk tilladelig løsning 

Strip method: Strimmelmetoden 

Third point positions: Trediedelspunkterne 

Tilts: Vippere 

Virtual works principle: Virtuelt arbejdes princip 

Yield line: Flydelinie 

 

Additional terms and words will be added, whenever a fair need is identified – and I assume, that 

my students will help me with this point. 
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8. Examples 
 

The following examples are integrated in this document to facilitate printing and to make sure you 

have all the relevant information: 

 

 Example 3.1. Serviceability Limit State. Deflections.  Rectangular plate with simple 

supports and uniform loading. 

 

 Example 3.2. Serviceability Limit State. Deflections.  Rectangular plate with hole and three 

sides supported.  

 

 Example 5.1. C-shaped plate with some simply supported sides and some free sides. 

 

 Example 5.2. Strip Method Design.  Rectangular plate with a hole and three sides supported. 

 

 Example 6.1. Yield Line Method.  Two point loading of a beam – plastic hinge. 

 

 Example 6.2. Yield Line Method.  Continuous beam with cantilever part. 

 

 Example 6.3. Yield Line Method.  Rectangular plate with uniform load.  

 

 Example 6.4. Yield Line Method.  Quadratic plate with “uniform” load. 

 

 Example 6.5. Yield Line Method. Distinguish between possible and impossible 

mechanisms. 

 

The full texts of the examples are enclosed in the following.
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Example 3.1. Serviceability Limit State. Deflections.  

Rectangular plate with simple supports and uniform loading. 
 

The problem  

 

The quadratic slab shown below is simply supported along all four sides and loaded by a uniform 

load q. 

 

 
The quadratic slab 

 

The maximal short-term deflection of the slab needs to be checked for two load combinations 

 

1. Low load: The deadload g plus a uniform load q of 10 kN/m
2
 

2. High load: The deadload g plus a uniform load q of 40 kN/m
2
 

 

The deflections depend significantly on whether the slab is cracked, as an uncracked slab will have 

far less deflection than a cracked slab. 

 

We will therefore initially assume that the slab is  

 

1. uncracked at ”low” loads and  

2. cracked at ”high” load, but still in the linear elastic range of the materials 

 

We must therefore estimate the deflections and also verify that our assumptions are correct. 

 

We will in the end compare the estimated deflections to experimental results in order to see how 

these assumptions influences our estimates and in order to see the correlation between the estimates 

and the experimental behaviour – although the dimensions of the slab are smaller than those of 

more realistic slabs (it was designed for lab testing). 
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Geometry and material parameters 

 

The reinforced concrete slab has a span length L = 2 m and is h = 81 mm thick and is reinforced 

with steel bars Ø7 mm per 100 mm in each direction, with an effective height d = 66mm.  

 

The material properties are 

 

25

20

400

440

cm

ck

yk

uk

f MPa

f MPa

f MPa

f MPa









 

 

The modulus of elasticity are estimated as 

 
0,3 0,3

25
22000 22000 27085

10 10

cm
cm

f
E MPa

   
    

  
 

 

The slabs will normally form visible cracks when the tensile stresses exceed the tensile strength 

after which the slabs will have a decreased stiffness. The tensile strength fctm is estimated as 

 
2/3 2/30,3 0,3 20 2,21ctm ckf f MPa     
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Case 1: Low load 

 

The slabs own weight g is estimated from its density incl. reinforcement of 24 kN/m
2
, leading to 

 
224 0,081 1,94 /g kN m    

 

We will assume that the load is so low that the slab is still uncracked. In this situation the plate 

stiffness is estimated as  

 
3 3

6 2

2 2

27085 81
1249,5 10 /

12(1 ) 12(1 0,2 )

cmE h
D Nmm mm




   

 
 

 

The deflection may now be determined from Figure 3.3b as  

 
4 4 3 4

max 6

( ) (10 1,94) 10 2000
0,0047 0,8

1249,5 10

pL g q L
u mm

D D
 

   
   


 

 

We will, however, need to check whether the assumption of an uncracked slab is correct and we do 

that be estimating the maximal tensile stress as 

 
2 3 2

max 1
,max 2 2 2

( ) 0,0486 (10 1,94) 10 2000
6 6 6 2,12 2,21

81
t ctm

m g q L
MPa f MPa

h h




    
       

 

We can see that this is below the tensile strength and the slab may therefore correctly be estimated 

as uncracked. The slab would probably crack at a load of app. 

 

23,36
(10 1,94) 1,94 16,98 /

2,12
q kN m     

 

Loads above this level would lead to a rapid decrease of the stiffness.
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Case 2: High load 

 

The high load (40+1,94=41,94kN/m
2
) is well above the load at which the cracks occur 

(16,98kN/m
2
) and we must therefore assume a cracked cross-section for which we estimate 

 
5

2

3 2 2

3 2 2 2

6 4

/ 2 10 / 27085 7,38

( / 2) ( ) 1000 ( / 2) 7,38 10 (7 / 2) (66 ) 0 16,88

1
( / 2) ( )

12

1
1000 16,88 1000 16,88 (16,88 / 2) 7,38 10 (7 / 2) (66 16,88)

12

8,742 10 /

s cm

t s

t s

E E

S b x x A d x x x x x mm

I bx bx x A d x

mm



 





   

               

    

       

  3 2

5
3 6 2

8,742 10 /

2 10
8,742 10 236,77 10 /

7,38

s
c t t

m mm mm

E
EI E I I Nmm mm



  


      

 

 

We use this stiffness in the expression for the deflection, where we replace the uncracked D with 

our cracked EI and find 

 
4 4 3 4

max 6

( ) (40 1,94) 10 2000
0,0047 13,32

236,77 10

pL q g L
u mm

EI EI
 

   
   


 

 

We have, however, based our estimations on the assumption, that the materials are still in the linear 

area and we will therefore need to estimate the maximal tensile stress in the reinforcement and the 

maximal compressive stress in the concrete. This requires first the maximal bending moment 

estimated as 

 
2 3 2 3

max 1( ) 0,0486 (40 1,94) 10 2000 8,154 10 /m g q L Nmm mm           

 

and then the stresses estimated as  
3

max
,max 3

3

,max 3

8,154 10
16,88 15,745 20

8,742 10

8,154 10
( ) 7,38 (66 16,88) 345 400

18,742 10

c ck

t

max
s yk

t

m
x MPa f MPa

I

m
d x MPa f MPa

I



 


    




       



 

 

This shows us that the stresses in the concrete and in the steel are well below their maximal possible 

values. It also indicates that the reinforcement would start to yield at a load of 

 

2400
(40 1,94) 1,94 46,7 /

345
q kN m     

 

Loads above this level are possible (as 440 400uk ykf MPa f MPa   ), but will lead to large 

deflections (as the reinforcements strain will grow rapidly due to the yielding). 
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Comparison with tests 

 

Three identical slabs were cast and tested at Stuttgart University by Bach and Graf from 1915 with 

this design and materials (you will meet that test again later, when we deal with the yield line 

method and the crack formations and you may see the development of cracks and deformations by 

clicking this link). 

 

 
Comparison between the three tested slabs and the estimated stiffnesses,  

cracking load and yielding load. 

 

We observe a fair correlation between the experimental results and our estimations of uncracked 

stiffness and cracking load, but also large differences between the uncracked and cracked stiffness. 

 

As this comparison shows, the estimation of the deflection will be quite conservative in a large load 

range, when we assume that all the cross-sections are cracked. However, a more precise estimation 

of the deflection of the partly cracked slab may be possible with a non-linear FEM-modeling. 

 

References 

 

Bach, C. and Graf, O.: ”Tests with simply supported, quadratic reinforced concrete plates” (In 

German:” Versuche mit allseitig aufliegenden, quadratischen und rechteckigen eisenbetonplatten”),  

Deutscher Ausshuss für Eisenbeton, Heft 30, Berlin 1915. 

http://www.youtube.com/watch?v=xlKj6EGZosQ&feature=plcp
http://www.youtube.com/watch?v=xlKj6EGZosQ&feature=plcp
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Example 3.2. Serviceability Limit State. Deflections.  

Rectangular plate with hole and three sides supported. 
 

The problem  

 

A rectangular slab with a hole is simply supported along all three sides and is loaded with its own 

weight g and a uniform load q. 

 

 
 

The rectangular slab (a = 1 m) 

 

The maximal short-term deflection of the slab needs to be checked for two load situations 

 

3. Short term load: The deadload g plus a uniform load q of 15 kN/m
2
 

4. Long term load: The deadload g plus a uniform load q of 7 kN/m
2
 

 

and we  need to verify that the deflection is less than L/250, where L is the shortest side of the slab.
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Geometry and material parameters 

 

The reinforced concrete slab has the dimension of 4 by 5 m with a 2 by 2 m hole. The slab is h = 

170 mm thick and is reinforced with steel bars Ø10 mm per 150 mm in each direction, with an 

effective height d = 140 mm.  

 

The material properties are 

 

35

8 43

550

ck

cm ck

yk

f MPa

f f MPa

f MPa



  



 

 

The modulus of elasticity are estimated as 

 
0,3 0,3

43
22000 22000 34077

10 10

cm
cm

f
E MPa

   
    

  
 

 

The estimated modulus of elasticity is the short-term value used for estimating short-term 

deformations, whereas a long-term value must be used for estimating long-term deflections. This 

modulus is estimated by reducing the short term modulus by a factor of 1  , where   is the creep 

factor, which can be set to 3 for most applications. 

 

The slabs will normally form visible cracks when the tensile stresses exceed the tensile strength 

after which the slabs will have a decreased stiffness. The tensile strength fctm is estimated as 

 
2/3 2/30,3 0,3 35 3,21ctm ckf f MPa     
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Structural analysis of the slab (FEM) 

 

The deflections are difficult (or impossible) to estimate with simple analytical methods. This is the 

case, even if we assume that the slab is uncracked (which may be somewhat unsafe and predict too 

low deflections) or that all the cross-sections in the slab are fully cracked (which may be too 

conservative and lead to too high estimate of the deflections). 

 

We may, however, carry out a linear elastic FEM-analysis using e.g. the Abaqus program or any 

other program and we will the find the maximal main stress and the maximal deflection for a certain 

stiffness D and a certain load p. 

 
Main stresses in Pa for p=100kN/m

2
 (maximal tensile stress is 38,25MPa). 

 

 
 

Deflection in m for p=100kN/m
2
 and D=154010

6
Nmm

2
/mm (maximal deflection is 23,95 mm) 

 

We do know that the load level used in the FEM-analysis does not correspond to our load levels, 

nor will the slabs stiffnesss in the FEM-analysis correspond to our values. The stresses are , 

however, proportional to p and the deflections are proportional to p/D and we will therefore be able 

to use the FEM-results for our slab by scaling these results. 

 

http://www.youtube.com/watch?v=8l62jYkMlH8&feature=plcp
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Case 1: Short term load 

 

The slabs own weight g is estimated from its density incl. reinforcement of 24 kN/m
2
, leading to 

 

 

 

We may check if the tensile stress in the uncracked state exceeds the flexural strength by using the 

result from the FEM-analysis 

 

,

19,08
38,25 7,30 3,21

100
c tension ctmMPa f MPa      

 

We must therefore estimate the slabs stiffness in the cracked state as 

 
5

2

3 2 2

3 2 2

/ 2 10 / 34077 5,87

1000
( / 2) ( ) 1000 (140 / 2) 5,87 (10 / 2) (140 ) 0

150

26,42

1
( / 2) ( )

12

1 1000
1000 26,42 1000 26,42 (26,42 / 2) 5,87 (10 / 2) (140 26,4

12 150

s cm

t s

t s

E E

S b x x A d x x x x

x mm

I bx bx x A d x



 





   

             

 

    

        2

6 4 3 2

5
3 6 2

2)

45,791 10 / 45,791 10 /

2 10
45,791 10 1560,4 10 /

5,87

s
c t t

mm m mm mm

E
EI E I I Nmm mm



    


      

 

 

which leads us to the estimate of the deflection as  

 
6

max 6

19,08 1540 10
23,95 4,5 / 250 4000 / 250 16

100 1560 10
u mm L mm


     


 

 

 

2

2

24 0,170 4,08 /

15 4,08 19,08 /

g kN m

p q g kN m

  

    
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Case 2: Long term load 

 

The load in this situation is 

 
27 4,08 11,08 /q q g kN m      

 

and we estimate the EI as for the short term load, but with a different modulus 

 
5

2

3 2 2

3 2 2

/ 2 10 / (34077 / 4) 23,48

1000
( / 2) ( ) 1000 (140 / 2) 23,48 (10 / 2) (140 ) 0

150
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1
( / 2) ( )
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1 1000
1000 47,65 1000 47,65 (47,65 / 2) 23,48 (10 / 2) (1

12 150
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t s

t s

E E

S b x x A d x x x x
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I bx bx x A d x



 





   

             

 

    

       2

6 4 3 2

5
3 6 2

40 47,65)

140,90 10 / 140,90 10 /

2 10
140,90 10 1200 10 /

23,48

s
c t t

mm m mm mm

E
EI E I I Nmm mm





    


      

 

 

which leads us to the estimate of the deflection as  

 
6

max 6

11,08 1540 10
23,95 3,4 / 250 4000 / 250 16

100 1200 10
u mm L mm


     


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Example 5.1. C-shaped plate with some simply supported sides and  

some free sides. 
 

The problem 

 

A Strip Method model needs to be developed for a rectangular reinforced concrete plate with a hole 

and simply supported on three sides as shown below.  

 

 

The plate geometry 

 

The plate has the same ultimate bending moment capacity in all both directions (x and y) and for 

both positive (  and ux uym m ) and negative moments ( ' ' and ux uym m ): 

 
' '

ux uy ux uy um m m m m     

 

The lower limit p
-
 for the load-carrying capacity of this plate shall be estimated for an uniform load 

p over the plate and we do therefore set up a model as shown below: 

 

 

The model of the strips in the 

plate. 

 

 

 

Please note that this drawing of 

the model for all the strips 

along with the plan of the plate 

with the loads indicated on is a 

very good way of checking that 

the models correspond to the 

load-distribution ion the plan 

and that the loads transferred in 

the two directions actually add 

up to the full load. 
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Developing the strip model 

 

 
 

 Step 1: 

 

A number of strips (similar to 

beams, floorboards, planks and 

similar) must be placed an 

cover all the plates area.  

 

We start therefore with strip 1, 

which is placed from one 

simple support to another. 

 
 

Step 2: 

 

We continue with another set of 

strips (no. 2), also placed from 

one simple support to the next. 

 
 

Step 3: 

 

We must now place a new layer 

of strips (no 3) on top of strips 

1 and 3.  

 

This layer of strips is not 

directly supported, but rests on 

top of the strips 1 and 2. 
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Step 4: 

 

We must now start to put the 

loading on the strips and to 

decide how the strips are 

supported (directly or by the 

other strips). 

 

We must always start with the 

last strip (as we place the 

loading on the uppermost layer 

of strips) 

 

So we start with strip 3. 

 

 

 

Step 5: The strip 3 is not 

supported at the ends, but rest 

on strips 1 and 2. 

 

The strip 3 rests on top of strip 

1 and 2, which may press up 

with a distributed reaction or 

force. These are unknown and 

are therefore named p1 and p2.. 

 

The symmetry means, however, 

that p2=p1. Please note that a 

symmetrical problem has 

normally a symmetrical 

solution – and that symmetry 

reduces the calculations later. 

 

 

Step 6: 

 

We see that the strip 3 transfer 

a distributed reaction or load p1 

to the strip 2 in the area, where 

the strip 2 is covered by strip 3. 

 

The area, not covered by strip 

3, is loaded with the uniform 

load p. 

 

The strip has two unknown 

reactions, here named as r1 and 

r2. 
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Step 7: 

 

We see from the symmetry, 

that the model for strip 1, is the 

same as for strip 2. 

 
 

Step 8: 

 

 

 

As the last part of our 

development of the model, we 

indicate on the drawing how 

the strips in the two directions 

share the uniform load p. 

 

Step 9: We remove the lines, 

which indicated the strips on 

the drawing and have now 

established our model. 

 

This setup of a model is widely 

used in the literature – whereas 

the drawing of the actual lines 

for the strips is normally left 

out (but they are a good tool in 

the learning process) 
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Calculating the lower limit solution 

 

Each strip need to be checked for moment equilibrium (so the strip does not tilt) and for vertical 

equilibrium.  

 

This must be checked on the last placed strip, as this strip is placed on top of all the other strips, 

after which the second last strip is checked etc.  

 

This corresponds to the approach we normally use for structures: We normally build the structure 

starting from the bottom – but we normally calculate the forces from the top and work our way 

down. 

 

We will thus estimate strip 3 first, then strip 2 and at last strip 1. 

Strip 3: 

 

Moment equilibrium: The use of symmetry secures the equilibrium. If we had not used p1=p2 from 

the beginning, then this control would have determined that the two reactions/loads were identically 

the same. 

 

Vertical equilibrium: 
1 2 1 1

3
3 2

2
pa p a p a p a p pa      

 

The maximal moment can be seen to be at the midpoint of the strip, where it must be less than or 

equal to the bending moment capacity 

 

2 ( )

3,max 1 3 2

3 3 3 8

2 4 8 3

u
u

m
m p a a p a a pa m p

a

          
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Strip 2: 

 

Moment equilibrium:  
1 1 1 1

3 3 11
2 / 2

2 2 2 2 8

a a
m pa p a a r a r pa p a a a pa

 
             

 
 

Vertical equilibrium: 
1 2 1 2 1 1

9

8
r r pa p a r pa p a r pa         

 

The strip will have its maximal moment(s) at the position(s), where the shear force is equal to zero, 

which is simplest found by drawing the shear force curve as follows 

 

 
 

It can be seen that the shear force has its zero at a < y < 2a, where 

 

2
2 1

1

9

138( ) 0
3 12

2

pa pa
r pa

v r pa p y a y a a a
p

p




            

The maximal moment is estimated in this point as 

 

2 ( )

2,max 2 1 2 2

13 13 1 1 1 121 192

12 12 2 12 2 12 192 121

u
u

m
m r a pa a a p a a pa m p

a

 
           

 
 

Strip 1: 

 

The strip 1 is identical to the strip 2 in both loads, reactions and strength so  

 
( ) ( )

1 2p p   

The load carrying capacity: 

        

The load carrying capacity of the plate is the lowest of the three estimated capacities as 

 

 ( ) ( ) ( ) ( )

1 2 3 2 2 2 2

192 192 8 192
minimum , , minimum , ,

121 121 3 121

u u u um m m m
p p p p

a a a a

     
   

 
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Example 5.2. Strip Method Design.  

Rectangular plate with a hole and three sides supported. 
 

The problem 

 

A Strip Method model needs to be developed for a rectangular reinforced concrete plate with a hole 

and simply supported on three sides as shown below.  

 

 

 

 

 

 

The plate geometry. 

 

The plate has the same ultimate bending moment capacity in both directions and for both positive 

and negative moments: 

 
' '

ux uy ux uy um m m m m     

 

The lower limit p
-
 for the load-carrying capacity of this plate shall be estimated for a uniform load p 

over the plate.
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Developing the strip model 
 

 
 

 Step 1: 

 

A number of strips 

(similar to beams, 

floorboards, planks and 

similar) must be placed 

an cover all the plates 

area.  

 

We start therefore with 

strip 1, which is placed 

from one simple 

support to another. 

 

Step 2: 

 

We continue with 

another set of strips (no. 

2), also placed from one 

simple support to the 

next. 
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Step 3: 

 

We must now place a 

new layer of strips (no 

3) on top of strips 1 and 

3.  

 

This layer of strips is 

not directly supported, 

but rests on top of the 

strips 1 and 2. 

 

Step 4: 

 

We continue in the 

same manner with a 

layer of strips (no 4) on 

top of strips 1 and 2.  
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Step 5: 

 

We must now start to 

put the loading on the 

strips and to decide how 

the strips are supported 

(directly or by the other 

strips). 

 

We must always start 

with the last strip (as 

we place the loading on 

the uppermost layer of 

strips) 

 

So we start with strip 4. 

 

Step 6:  

 

The strip 4 is simply 

supported at the end, 

but rest also on strips 1 

and 2. 

 

We name the unknown 

reaction r1 (and later 

reactions r2, r3 etc.). 

 

The strip 4 rests on top 

of strip 1 and 2, which 

may press up with a 

distributed reaction or 

force. These are 

unknown and are 

therefore named p1 and 

p2.. 
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Step 7:  

 

We continue with strip 

3.  

 

The plate is symmetri-

cal and loaded by a 

uniform load. We see 

therefore that the strip 3 

should be the same as 

strip 4 and we use this 

information.  

 

Note that taking the 

symmetry into account 

reduce the amount of 

calculations we have to 

carry out – but note also 

that the most optimal 

solutions to 

symmetrical problems 

tend to be symmetrical. 

 

 
 

Step 8:  

 

We see that the strips 3 

and 4 load the strip 2 

with a load p2 in the 

areas, where the strip 2 

is covered by the strips 

3 ad 4. 

 

The strip 2 is directly 

loaded by p in the 

middle, where no other 

strips are placed above 

this strip. 

 

The strip is symmetrical 

with a symmetrical load 

and the unknown 

reactions at the ends are 

therefore identical and 

we name them r2. 
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Step 9: 

 

The last strip, strip 1, is 

loaded in the same 

manner as strip 2, 

although the loads from 

strip 3 and 4 are 

denoted p1.  

 

The unknown reactions 

at the end of the 

symmetrically loaded 

and supported strip are 

named r3. 

 
 

Step 10: 

 

As the last part of our 

development of the 

model, we indicate on 

the drawing how the 

strips in the two 

directions share the 

uniform load p. 
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Step 11: We remove the 

lines, which indicated 

the strips on the 

drawing and have now 

established our model. 

 

This setup of a model is 

widely used in the 

literature – whereas the 

drawing of the actual 

lines for the strips is 

normally left out (but 

they are a good tool in 

the learning process) 

 

 

Please note: This approach with the drawing of the models for all the strips along with the 

plan of the plate with the loads indicated on is a very good way of checking that the models 

correspond to the load-distribution ion the plan and that the load transferred in the two 

directions actually add up to the full load. 
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Calculating the lower limit solution. 

 

Each strip need to be checked for moment equilibrium (so the strip does not tilt) and for vertical 

equilibrium.  

 

This must be checked on the last placed strip, as this strip is placed on top of all the other strips, 

after which the second last strip is checked etc.  

 

This corresponds to the approach we normally use for structures: We normally build the structure 

starting from the bottom – but we normally calculate the forces from the top and work our way 

down. So we start with strip 4, then strip 3, then strip 2 and at last strip 1. 

Strip 4: 

 

We notice immediately, that we have a strip with 3 unknowns: p1, p2 and r1.  

 

We have only 2 equilibrium conditions, so we have 3-2=1 degrees of freedom in the static system 

and will therefore have to choose one of the three parameters or to choose that there should be a 

specific relationship between some of these parameters. We decide to choose 

 

1 / 2p p   

 

Please note: This may be a good choice, which leads to a high value of the lower limit solutions, as 

p1 is active in an area in a corner, supported on two sides, so it would seem logical if equal parts of 

the load p were carried in the two directions and it might lead to a fairly high value of the load 

carrying capacity. This is however, just a simple choice and any other choice would be equally valid 

and only an optimisation with variation of p1 could determine if this is indeed an optimal choice. 

 

The moment equilibrium requires 

1 2 2 1

5 9 25 4 23
5 2 0

2 2 9 9 9
m pa a p a a p a a p p p p             

The vertical equilibrium requires 

1 1 2

13
5 2

9
r pa p a p a pa     

We may now draw the shear force curve in order to identify the point, where the shear is zero 

 

 

x 



  

Reinforced Concrete Slabs. Design and Analysis  Page Ex 5.2 - 9 

 

This means that the shear force is zero at x (between x=2a and x=4a), where 

1 1
1 1

2 22
( ) 2 0

9

r p a
v x r px p a x a

p


        

where we find the maximal moment 

2 2 ( )

4,max 1 1 4 2

161 81
2 ( ) ½

81 161

u
u

m
m r x p a x a px pa m p

a

          

Strip 3: 

 

The strip 3 is identical to strip 4 in all aspects, so 

 
( ) ( )

3 4p p   

Strip 2: 

 

We identified the symmetry of the loading and the reactions in strip 2, so the moment equilibrium is 

fulfilled, but the vertical equilibrium requires then 

 

2 2 2 2 2

32
2 2

9
r p a pa p a r pa p a pa        

The maximal moment is found in the middle of the span as 

 

2 ( )

2,max 2 2 2 2

3 25 9
2

2 2 9 25

u
u

ma
m r a p a a pa pa m p

a

         

Strip 1: 

 

The strip 1 corresponds to strip 2, if one just replaces p2 and r2 with p1 and r3 and we find therefore 

 

3 1

3

2
r pa p a pa    

2 ( )

1,max 3 1 1 2

3 7 4
2

2 2 4 7

u
u

ma
m r a p a a pa pa m p

a

         

The load carrying capacity 

 

The load carrying capacity of the plate is the lowest of the four estimated capacities as 

 

 ( ) ( ) ( ) ( ) ( )

1 2 3 4 2 2 2 2 2

4 9 81 81 9
minimum , , , minimum , , ,

7 25 161 161 25

u u u u um m m m m
p p p p p

a a a a a

      
   

 
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Other choises of p1 

 

Other choices of p1 would be possible and would lead to other load carrying capacities, either 

higher or lower.  

 

These other choices may be calculated with the same approach as we have just followed or we may 

program the solutions into a spreadsheet, Matlab, Matcad or a number of other programs, however, 

in the case of use of programs, we would normally enter the complete description of the moment 

curves. 

Strip 4 and strip 3: 

2 1

25 4

9 9
p p p   

1 1 25 2r pa p a p a    

2

1 1

2

4 1 1

2

1 1 2

3 4

½( ) 0 2

( ) ( )2 ( ) ½ ( 2 ) 2 4

( )2 ( ) 2 ( 3 ) ½( )( 4 ) 4 5

( ) ( )

r x p p x for x a

m x r x p p a x a p x a for a x a

r x p p a x a p a x a p p x a for a x a

m x m x

    


       
          



 

Strip 2: 

2 2r pa p a   

2

2 2

2

2 2 2

2

2 2 2

2

2 2

½ 0

( ) ( / 2) ½ ( ) 3

( / 2) 2 ( 2 ) ½ ( 3 ) 3 4

1
( 2 ) (3 )

2

r y p y for y a

m y r y p a y a p y a for a y a

r y p a y a pa y a p y a for a y a

m y a p p a

   


      
        

  

 

Strip 1: 

3 1r pa p a   

2

3 2

2

3 3 1

2

3 1 1

2

3 1

½ 0

( ) ( / 2) ½ ( ) 3

( / 2) 2 ( 2 ) ½ ( 3 ) 3 4

1
( 2 ) (3 )

2

r y p y for y a

m y r y p a y a p y a for a y a

r y p a y a pa y a p y a for a y a

m y a p p a

   


      
        

  

 

Optimum is reached when the capacity is the same in two of the strips, which happens at 1 2p p at 

which we find 

 

( )

2 2

39
0,4063

96

u um m
p

a a

    
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Example 6.1. Yield line method.  

Two point loading of a beam – plastic hinge 
 

The problem 

 

We need to try to use the Virtual Works principle to find an upper limit solution for a simply 

supported beam with the two point loads. The failure mechanism we use will be determined directly 

from the observed failure of a beam designed, tested and reported in a CDIO project at DTU. 

Testing of the beam 

 

The beam is for practical purposes turned up-side down for the testing in the laboratory, so that the 

tensile zone is at the upper side of the beam. The loading is increased in steps, while the deflections 

are recorded and cracks are recorded for each load step until the failure load is reached. 

 

 
 

The test setup and the failed beam. 

 

The beam shows yielding and significant crack formation over the length between the two point 

loads before the failure (as expected from the traditional theories). It is observed that at failure, the 

deformations grow significantly in the middle third of the beam without any increase of the loads, 

but with yielding in this area and that the failure is quite ductile and plastic. 

 

 
 

The bending moment – curvature relationship  

(points A to H correspond to stages in the testing – click on link above the figure). 

http://www.youtube.com/watch?v=_m118rIaP1I&feature=plcp
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Static system of the beam 

 

The simply supported beam is loaded by two point loads in the third point positions, which results 

in a constant bending moment in the middle third of the span as shown below. 

 

 
 

The beam and the loads (top) and the resulting bending moment (bottom). 

 

Failure mechanism 

 

The beams failure mechanism is yielding of the reinforcement and crushing of the concrete over a 

part of the middle third of the beam, which leads to additional deformations as illustrated below. 

 

 
 

The failure mechanism for the beam (only incremental deformations in the failure are shown). 

 

The incremental deformation  shown in the figure is the infinitely small extra deformation, which 

occur at the exact time and does not correspond to the variations of the deformations before the 

failure.  
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Use of the Virtual Works Principle 

 

The internal work is the sum of the bending moments and the incremental curvatures  in the 

beam, which occurs at the time, where the failure occurs. This means that  

 

( ) ( )iW M s s ds    

 

The part of the middle third of the beam yields and bends, whereas rest of the beam do not show 

any additional curvature. This means that the inner work is calculated as 

 

( ) ( ) ( )i u u uW M s s ds M s ds M a M                  

 

since the bending moment is equal to the positive yielding moment Mu in the middle third of the 

beam and the bend  is found as 

 

( )s ds    
 

This means that the internal work can be estimated as the work in a concentrated plastic hinge with 

a certain yielding moment and a certain bend. A closer measurement of the failure mechanism will 

also reveal, that is the incremental bending in the precise moment of failure will be located to one 

concentrated area in the middle third of the beam. 

 

 
 

The concentrated plastic hinge mechanism. 

 

The estimations lead therefore to 

 

3 4
2 2 /

2 3

4

3
i u u

a
a

W M M
a


  




 
      

 

 
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The external work 

 

This is estimated as the sum of the external loads multiplied with the incremental deformations of 

the beam in the load positions 

 

2 4
( ) ( ) 2

3 3
e i iW p s s ds P P P             

Load-carrying capacity 

 

The upper limit estimate of the load-carrying capacity is calculated by setting the external and the 

internal work equal to each other as 

 

4 4

3 3

/

i e

u

u

W W

M P
a

P M a




 

 

  

Comments 

 

This example shows that a plastic hinge may represent a continuous length of the beam with failure 

(yielding of the cross-section) and that the model for the failure may correctly use such a 

concentrated plastic hinge, located in a position in the middle of the span. 

 

This is the same value as the classic beam theory predicts, since we have used the correct failure 

mechanism in which case the upper-limit solution will always determine the true capacity. (Use of 

an incorrect, but possible failure mechanism would normally lead to a predicted capacity above the 

true value, thus the term upper limit solution) 

 

Notice that this has shown, that the use of an upper limit solution based on an assumed, permissible 

failure mechanism can be used to estimate the of load-carrying capacity of a simple beam 
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Example 6.2. Yield Line Method.  

Continuous beam with cantilever part. 
 

The problem 

A continuous beam is simply supported in two locations, however, the beam runs continuously over 

one of the supports, forming a cantilever part as shown below 

 

 
 

Static system of the beam. 

 

The beam is loaded by a uniform load p and a single load P=pa and has as positive bending moment 

capacity of uM and a negative bending moment capacity of '

uM , where ' 2u uM M . 

 

This leads to a system, where the location of the plastic hinge is not so obvious and where we will 

have to look at several failure mechanisms and optimize these by optimizing the location of the 

plastic hinge. 
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Failure mechanism 

 

We notice that the beam must have both positive and negative moments and that we therefore do 

not know if the plastic hinge will be placed in the part with positive or negative bending, nor do we 

know if the hinge will be located between the supports or in the cantilever part of the beam.  

 

We must therefore consider a total of four mechanisms: 
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Calculating the upper limit solution 

 

We must determine the external and internal work for each of these mechanisms and either optimize 

each of these manually or enter the formulas in eg. a spreadsheet (we could use Excel for this 

purpose). 

 

Mechanism 1 (0<x<3a) 

 

We find that  

3
and

3 (3 ) 3 3
P

a a
a

x a x x a x a x a x

  
       

   
 

 

after which we may estimate the internal and external work 

 

3
3 ( )

2 2 2

i u

P
e P P

W M

W p a p a P pa




  



      
 

 

where Wi=We leads to 

 

( )

1

2
0

3 (2 )
( )

2

u u

P

M M
p

x a x
a



 

   




 which is lowest at x=a, where ( )

1 2

2
up M

a

   

 

Mechanism 2 (0<x<3a) 

 

We notice that this is essentially the opposite mechanism as mechanism 1, except the external work 

changes sign and uM  is replaced by '

uM , so we find 

' '
( )

2

2
0

3 (2 )
( )

2

u u

P

M M
p

x a x
a



 

  
  




 which is lowest at x=3a, where ( )

2 2

4

3
up M

a

   
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Mechanism 3 (3a<x<4a) 

 

We find that  

4a x


 


 

after which we determine the internal and external work and the upper limit solution 

 

(4 ) (6 )
2 2

i u

e

W M

W p a x P p a x



 




       
 

( )

3

2 2
0

(6 ) (4 )(6 )

u uM M
p

a x a x a x





  
  

  
which is no solution, as it will be negative for all x>3a. 

 

Mechanism 4 (3a<x<4a) 

 

This mechanism is the opposite of mechanism 3, so we just change the sign of the external work 

and replace the Mu by Mu’ and finds 

 
' '

( )

4

2 2
0

(6 ) (4 )(6 )

u uM M
p

a x a x a x





   
  

 which is lowest at x=3a, where ( ) '

4 2 2

2 4

3 3
u up M M

a a

    

The load-carrying capacity 

 

The loadcarrying capacity is estimated as the lowest, positive value 

 

( ) ( ) ( ) ( ) ( )

1 2 3 4 2

4
min( , , , )

3
up p p p p M

a

       

 

This corresponds to a hinge, located over the intermediate support – represented by both mechanism 

2 and 4 as they agree on the yield hinge placed over the support (in x=3a). 

Comments 

 

It should here be noticed that other choices of loads or other choices of uM and '

uM  would lead to 

other loadcarrying capacities and eventually also to another position of the plastic hinge in the 

failure mechanism. 

 

The mechanism 3 can’t lead to an estimate of the loadcarrying capacity as all p
+
-values for any 

position of the hinge in the x-range between 3a and 4a will be negative – and we could have seen it 

directly from the drawing of the failure mechanism, as all external loads would either not have any 

displacement or have a displacement against the direction in which they work. 
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Example 6.3. Yield Line Method.  

Rectangular plate with uniform load 
 

The problem 

 

We need  to determine the failure mechanism in a rectangular plate, simply supported along all four 

sides and loaded by a uniform load. The corners as supported in a way, so they can’t tilt (lift). 

Testing of the slab and failure mechanism 

 

The slab is produced in fibre reinforced concrete and has therefore the same ultimate bending 

moment capacity mu in both directions and both sides. It is simply supported by rollers on both 

sides and along all for sides and is loaded by an airbag. 

 

  
Failure mechanism the observed failure mechanism shape and the crack patterns. 

 

 
Failure mechanism 

 

The observed failure mechanism with maximal displacement  in rectangular plate with uniform 

load p and simple supports on all 4 sides (Ly < Lx).  
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Calculating the upper limit solution 

 

The external work is estimated (as for the beam) as the sum of the loads multiplied with the 

incremental deformations of the beam in the points, where the loads are applied 

 

( , ) ( , )e i iW p x y x y dx dy P       

 

This is normally a simple summing up of a number of integral over a number of smaller areas plus a 

sum of contributions from concentrated loads. It is, however, recommended to go through the 

following three steps 

 

1. subdivide the failed slab into sections of triangular or rectangular area with a constant load 

intensity; 

2. indicate the average displacement in each section (as the average displacement in a triangle 

or rectangle is the average of the displacements in the corners of the areas) and then 

3. add up the contributions from each section. 

 

  
Step 1: The failed slab is subdivided into 

rectangular and triangular sections and the 

displacements are indicated in all corners 

Step 2: The average displacements of each 

section is indicated in circles. 

 

Step 3: The figure shows that the average displacements in the sections are /3 or /2 in this 

example, so that the adding up in step 3 leads to 

 
2 2( / 3) / 2 ( / 2) ( ) ( / 3) / 2

( / 3 ( ) / 2)

e y y x y y

y y x y

W p L p L L L p L

p L L L L

  



          

     
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The internal work in the slab is created in the yield lines, just as it was created in the plastic hinge 

in the beam and depends on the “bend” in the yield line. 

  

The problem with the estimation of the internal work in the yield lines is normally that there is a 

contribution from each of the yield lines and that the reinforcement directions may not be parallel or 

perpendicular to the yield line, so the estimation of the internal works in the yield lines may be quite 

extensive. We would therefore like to simplify the estimations by using the internal work, which is 

estimated as 

 

in u in u in

i in

W m ds m L

W W

      






 

 

 

Rotations of the four parts of the slab. 

 

The equivalent, internal work in the slabs section requires a determination of the rotation of the 

sections, which are determined as 

 

1 3

2 4

2 /

2 /

x x

y y

b

b

  

  

 

 
 

 

We may now estimate the work in each of the four sections as 

1 1 1 1 1 1 3

2 2 2 2 2 2 4

2

2

i ux y ux y x u x i

y

i uy x uy x y u y i

y

W m L m L m L W
L

W m L m L m L W
L


 


 

   

   

 

and finds the total internal work as 

 

1 2 3 4 4 ( )i i i i i u x y u

y

W W W W W m L L m
L


       
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The loadcarrying capacity is now estimated from 

 

e iW W  

 

which in our example leads to 

  

2

24( )

(3 )

y x

u

y x y

L L
p m

L L L




  
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Example 6.4. Yield Line Method.  

Quadratic plate with “uniform” load. 
 

The problem 

 

The case will show the development of cracks in the slab and the development of yielding lines in 

the slab at the higher load levels. The quadratic slab is actually one of the tests, used by K.W. 

Johansen as documentation for his yield line theory. 

Static system of the slab 

 

The slab was intended to be simply supported and loaded by a number of loads, simulating a 

distributed, uniform load. The slab was therefore placed directly on top of a steel frame, which 

prevents the slabs sides from moving down, but did not prevent the sides or corners from moving 

upwards in contrast to our normal, ideal simple support.  

 

We will therefore start by seeing the development of the failure mechanism as reported from the 

testing, but we will analyse three different cases 

 

1. Simply supported sides with no tilting of the corners (easy); 

 

2. Simply supported sides, which allows tilting of the corners (difficult – but KWJ’s example); 

 

3. Simply supported sides, with an estimation of the corners forces required to prevent tilting. 
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Calculating the upper limit solution 

 

Estimating the effect of tilting corners is not difficult, but it does complicate the estimations 

significantly and we will therefore start with the simple situation, where the quadratic slab is truly 

simply supported along all four sides with the corners prevented from tilting and the load described 

as a uniform load p. 

Case 1: Quadratic slab with no tilting 

 

 
The failure mechanism without tilting corners. 

 

In this case we find 

 

2

1 1
4

3 2 2 3

4 4 8
/ 2

24

e

i u u u

u

L
W p L L

W m L m L m
L

m
p

L





 



    

   


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Case 2: Quadratic slab with tilting corners 

 

Testing of the slab. 

 

The failure mechanisms in slabs develop more or less in the same way as the beams plastic hinges, 

that is, we will observe no cracks at low load levels, then later a few cracks will appear and increase 

in numbers and widths as the load increases. This was observed in some of the tests shown below. 

 

P = 7000 kg P = 7500 kg P = 8000 kg P = 9000 kg P = 10000 kg 

     
P = 12000 kg P = 14000 kg P = 16000 kg P = 18000 kg P = 20000 kg 

     
P = 22000 kg P = 24000 kg P = 26000 kg P = 26300 kg Load-deflection 

     

 

Development of crack patterns at increasing load levels in a square slab (2 x 2 m), supported 

directly on a frame and loaded in 16 points. 

    
 

Final crack pattern and observed failure mode. 

http://www.youtube.com/watch?v=xlKj6EGZosQ&feature=plcp
http://www.youtube.com/watch?v=xlKj6EGZosQ&feature=plcp
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Estimations 

 

We found that it was easy to estimate the capacity of the square slab without tilting corners was 

easy and we are now ready to move on to the more complicated situation with the tilting corners, 

which was tested. 

 

 
The failure mechanism with tilting corners (left) and details from the corner (right). 

 

We do at the moment not know the distances x and y, but we may estimate the external and internal 

work as usual, after determining the two last displacements. 

 

1
1 12  and 2

/ 2 22 / 2
c

x x y
y

L L x yx y


    


     


 

 
Division of the slab into triangles and rectangles (left) and indication of the average displacements. 
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We find now 

 

 

211 1 12 1 2 1 1
4 ( 2 ) ( 2 ) 2 ( ) ( 2 ( ))

3 2 2 2 3 2 3 2

2
4 ( 2 ) 2 4 ( 2 ) 2 8 8

/ 2

c
e

c

i u c u u u u u c

L x
W p L x p L x x p x x y p x x x y

L y
W m L y m y m L y m y m m

L y L

    


   

  
            

 

  
        

 

 

We can now use the requirement of 
e iW W  to determine the upper limit value of the loadcarrying 

capacity p
+
 for given values of x and y. One may of course try in the traditional way to find the 

optimal (lowest) value of p
+
 by differentiating with respect to x and y, but the engineer would 

normally use eg. Matlab or Excel to find to this optimal solution, which is  

2

2

22,2

/ 0,44

/ 0,14 1/ 7

0,3197

7,0928

u

u

i

e

m
p

L

x L

y L

W m

W pL





 



 





 

 

If we compare this to the solution with no tilting of the corners, we find that this mechanism leads 

to 7,5 % lower capacity p
+
, which is not a major difference. 

 

The tests did, however, not use a perfectly uniform load, but loaded the slabs with its own weight 

and 16 single point loads, which lead to x/L=1/8. Rerunning the optimization of p+ with this x-

value we do find  

 

/ 0,55 / / 0,55y L x L y x    

 

which corresponds very well to the reported crack pattern. 

 

We will normally have the corners restrained, either by the loads from eg. walls or by 

reinforcement, which anchors the slab to the supports. This reinforcement is normally concentrated 

in an area around the corner, which covers extend over a length of 1/7 of the shortest side of the 

slab, just as we found y/L=1/7 in our optimization.   

 

Note: Slabs with simply supported sides and with the corners restrained properly will not be able 

have tilting corners and this may lead to up to 10 % higher load-carrying capacity according to 

K.W. Johansen. 
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Case 3: Quadratic slab with tilting corners with additional loads at the corners  

 

We have now estimated the capacity of the slab without and with tilting corners. We would, 

however, like to estimate the corner forces required to prevent the tilting, as this force may have to 

be transferred through additional reinforcement anchored into the supports. 

 

We will estimate this by adding a single load Rc at each corner of the slab, where 

 
2

cR npL  

 

 
Concentrated reactions at the corners. 

 

We may now estimate the inner work Wi and the external work We. These are the same as in the 

previous situation, except for an additional contribution to We as 

 

4e c cW R    

 

We will start with a very low value of  and estimate the inner and outer work, find the 

loadcarrying capacity p+ and optimize this with respect to x and y to find the best (lowest) p
+
 for 

this corner reaction.  

 

We notice as expected that the tilt decreases in size with increasing n (as the single loads in the 

corners should reduce the tilting effect) and we increase n in small steps until y=0 and c =0 is 

reached. We find 

 

0,08333 1/12n    

 

This means that in the case of a quadratic slab with uniform load and the observed yield line 

pattern, each corner needs to be restrained by a force of 1/12pL
2
 in order to prevent tilting.  
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Example 6.5. Yield Line Method.  

Distinguish between possible and impossible mechanisms 

The problem 

 

An upper limit solution is needed for the slab shown below. It will require the engineer to determine 

a few, different failure mechanisms for the yield line methods determination of the load-carrying 

capacity. 

 
 

A number (40) of potential yield line patterns have been suggested: Your task is to determine which 

of the suggested mechanisms are possible and which are impossible. 

 

You will find the correct answers to these questions on the following pages. 

 

An alternative to this is to download the self-quiz, which randomly select a number of yield line 

patterns from a pool of over 150 figures – you can use the quiz a number of times. 

http://www.betonkonstruktioner.byg.dtu.dk/upload/subsites/betonkonstruktioner/example%206.7%20-%20possible%20or%20impossible%20yield%20line%20patterns.pdf


  

Reinforced Concrete Slabs. Design and Analysis  Page Ex 6.5 - 2 

 

Suggested yield line patterns 

 

Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4 

    

Mechanism 5 Mechanism 6 Mechanism 7 Mechanism 8 

    
Mechanism 9 Mechanism 10 Mechanism 11 Mechanism 12 

    

Mechanism 13 Mechanism 14 Mechanism 15 Mechanism 16 

    
Mechanism 17 Mechanism 18 Mechanism 19 Mechanism 20 

    
Mechanism 21 Mechanism 22 Mechanism 23 Mechanism 24 
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Mechanism 25 Mechanism 26 Mechanism 27 Mechanism 28 

    
Mechanism 29 Mechanism 30 Mechanism 31 Mechanism 32 

    
Mechanism 33 Mechanism 34 Mechanism 35 Mechanism 36 

    
Mechanism 37 Mechanism 38 Mechanism 39 Mechanism 40 
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Answers to all the mechanisms 

 

Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4 

    

Mechanism 5 Mechanism 6 Mechanism 7 Mechanism 8 

    
Mechanism 9 Mechanism 10 Mechanism 11 Mechanism 12 

    

Mechanism 13 Mechanism 14 Mechanism 15 Mechanism 16 

    
Mechanism 17 Mechanism 18 Mechanism 19 Mechanism 20 

    
Mechanism 21 Mechanism 22 Mechanism 23 Mechanism 24 

    

OK OK 

OK OK OK 

OK OK 

OK 
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Mechanism 25 Mechanism 26 Mechanism 27 Mechanism 28 

    
Mechanism 29 Mechanism 30 Mechanism 31 Mechanism 32 

    
Mechanism 33 Mechanism 34 Mechanism 35 Mechanism 36 

    
Mechanism 37 Mechanism 38 Mechanism 39 Mechanism 40 

    
 

 

 

 

 

 

 

OK 

OK 

OK 
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